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I asked: How much Galois Theory are
we expected to know? I’ve learned bits

and pieces of it here and there but I’ve

never taken a full formal course in Ga-
lois Theory.

Professor Olsson says: hard to answer
specifically, I’ll put some notes up.

Note to reader: I use a Tufte style lay-
out for my notes. The main informa-

tion from lecture will be in the body
of the text, the sidenotes are my com-
ments, questions, and remarks. My

only nonstandard notation that I can

think of is that I use ⊂ to mean strict
subset, and ⊆ when the inclusion is not

necessarily strict.

Math 254A: Introduction to Algebraic Number Theory Fall 2020

Lecture 1: 26 August

Professor Martin Olsson Abhishek Shivkumar

Administrative Stuff

Lectures are an hour and a half, with a break somewhere in the middle.

Lectures will be recorded for (mostly) the benefit of people not in the

country. Students should aim to follow the rhythm of the course and talk

to their classmates so that the online learning environment doesn’t just

become a recitation of the textbook. Professor Olsson will aim to have office

hours so that people living abroad can access them as well, but contact him

if you have constraints.

If you’re concerned about prerequisites, talk to Professor Olsson and speak

up in class if there’s something you don’t recognize. Not a fatal problem if

you’re missing background in some area; you can catch up by reading on

your own.

There are four recommended books for the class; we’ll start with the first

four chapters of Serre’s Local Fields, it’s very concise and terse. All four

books should be accessible to Berkeley students for free; three are Springer,

one is a set of free online notes.

Everyone learns math differently, the approach of this class will be lots

and lots of problems and exercises. Don’t worry too much about homework

grades, they’re really just there to measure your understanding. He’ll reach

out if he thinks someone is struggling. Do the survey he sent out so he can

get a feel for where everyone is at, background-wise.

The remainder of the grade for this course (30%) is the term paper, which

we’ll discuss more when we’re closer to it.

We should all work to make this a safe environment for people to learn.

Treat your classmates with respect.
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I’m not sure if this is injective on solu-

tions up to permutation; I recall there
being some degeneracy.

Number Theory from 40,000 Feet

Question 1.2.1

What is number theory?

• Structure of Q, Z, prime numbers, the distribution of primes (this is

more the analytic side of things)

• What are the solutions of the equation

x2 + y2 = z2

in Z or Q? (Diophantine equations)

Answer: parameterized by Z2 by the map

(a, b) = (a2 − b2, 2ab, a2 + b2) = (x, y, z)

Aside: this defines an embedding P1 ↪→ P2.

• What are the solutions of the equation

xn + yn = zn

in Z or Q for n ≥ 3? Answer: only the obvious solutions (due to Wiles,

around 1990)

Definition 1.2.2: Algebraic Numbers

α ∈ C is algebraic if it satisfies an equation f(α) = 0 with f ∈ Q[x].

Lemma 1.2.3

The algebraic numbers form a field, Q, with Q ⊂ Q ⊂ C.

Most of this course will be dedicated to studying finite extensions of fields,

namely finite extensions of Q.

Definition 1.2.4: Number Fields

A finite field extension k of Q is a number field. Ok, the ring of

integers of k, is the integral closure of Z in k.

Given a number field k, we have the following diagram:

k Ok

Q Z
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I need to think a little about why C is
“global” and why Qp or Qp is “local.” I

don’t really understand that assertion.

We may sometimes have an example or

two between a lemma or theorem and

its proof. I hope this doesn’t cause any
confusion, as I haven’t set up my proof
environment to reference the result to

which they belong yet.

A fundamental tool in commutative algebra which we will use is completion,

which comes in two flavors. There’s the algebraic version, which takes the

algebraic closure of a field and allows you to fill in missing zeros of your

polynomials, and there’s p-adic completion, which is more local.

For what follows and the rest of the course, all rings are commutative and

unital.

Definition 1.2.5: Integral Closure

Let A ↪→ B be an inclusion of rings, then an element b ∈ B is

integral over A is b satisfies an equation

bn + an−1b
n−1 + · · ·+ a0 = 0

with n > 0, ai ∈ A. The ring B is called integral over A if every

element of B is integral over A.

Then, the integral closure of A in B is the set of all integral elements

of B over A. When we speak of the integral closure or normalization

of A without reference to some larger ring B, we mean its integral

closure in its field of fractions.

Lemma 1.2.6

Given an inclusion of rings A ↪→ B, b ∈ B is integral over A iff there

exists a finitely generated nonzero A-submodule M ⊆ B such that

bM ⊆M .

Example 1.2.7

We have that Z ↪→ C, and consider the Z-submodule of C (a +

b
√
−7). This submodule is stable under multiplication by

√
−7, so√

−7 is integral.

Proof: For the forward implication, let b be integral over A, and let M be

the submodule generated by b, which is of the form

{a0 + a1b+ · · ·+ arb
r}

and finitely generated since b satisfies a monic equation in A. If

bn + an−1b
n−1 + · · ·+ a0 = 0

is the monic equation satisfied by b, then

bn = −a0 − a1b− · · · − an−1b
n−1

Therefore, bM is clearly a subset of M since bn is expressible in terms of

lower powers of b.
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We shouldn’t say the submodule gen-

erated by b in the forward implica-

tion above, rather, the smallest A-
submodule containing b, which is what

we have described.

I really liked the Cayley-Hamilton

proof of the reverse implication, but I

don’t really understand why we needed
the commutative diagram in the proof.

For the converse, let M = (v1, · · · , vr) with bM ⊆M , and consider the left

multiplication map ·b : M →M given by

bvi =
∑
j

aijvj

This expression is just the decomposition of bvi into the vi, which exists by

assumption. Then we have the following diagram, where R = (aij) is the

matrix of coefficients:

Ar M B

Ar M B

R=(aij) ·b ·b

Then, let

P (x) = det


x− a11 · · · −a1r

...
. . .

...

−ar1 · · · x− arr


By the Cayley-Hamilton Theorem, we know that P (R) = 0, and since b is

an eigenvalue of R, P (b) = 0 and therefore, b is integral. �

Lemma 1.2.8

Let b ∈ B be integral over A, and consider B′ ⊆ B the A-subalgebra

generated by b. Then A ↪→ B′ is integral, e.g, B′ is integral over A.

Proof: M = B′ is a finitely generated A-module, stable under multiplica-

tion by anything in B′ via “wraparounds,” so by the above lemma, B′ is

integral over A. �

Lemma 1.2.9

If B is integral over A and finitely generated as an A-algebra, then

B is finitely generated as an A-module.

Example 1.2.10

C[x] is finitely generated as a C-algebra, generated by x, since we can

multiply x with itself, but is not finitely generated as a C-module.

Proof: Consider the sequence

A ↪→ A[b1] ↪→ A[b1, b2] ↪→ · · · ↪→ A[b1, · · · , bn]

where the bi are the generators of B as an A-algebra. By the above lemma,

each inclusion above is integral, so if we can show that A[b1] is finitely

generated as an A-module, by induction, the result follows.
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Then, we want to show that A[b] is finitely generated as an A-module when

b is integral. But, since b satisfies the equation

bn + an−1b
n−1 + · · ·+ a0 = 0

by assumption, we may take 1, b, · · · , bn−1 as an A-basis for A[b], from

which the result follows. �
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We spent some time reviewing the rele-

vant info from last lecture, namely, the
definition of an integral element, the

statement Lemma 1.2.6, and reviewing

the proof of Lemma 1.2.9.

This next result is a little out of order,
since we defined integral closure last

week and you really need to show that

this holds before that definition even
makes sense.

Math 254A: Introduction to Algebraic Number Theory Fall 2020

Lecture 2: 31 August

Professor Martin Olsson Abhishek Shivkumar

Integrality

Proposition 2.1.1

If A ↪→ B ↪→ C, with C integral over B and B integral over A, then

C is integral over A.

Proof: Let c ∈ C, with integral equation

cn + bn−1c
n−1 + · · ·+ b0 = 0

with bi ∈ B. Let B1 ⊆ B be the sub-A-algebra generated by the bi.

B1 is finitely generated as an A-module, since B is integral over A, by

Lemma 1.2.9. Define C1 to be the subalgebra of C generated by B1 and

c. Suppose B1 = (d1, · · · , dt) as an A-module, then C1 is generated as an

A-module by dic
j for 0 ≤ j ≤ n− 1. �

Proposition 2.1.2

Let L be a field, A ⊆ L a subring, B the integral closure of A in L.

B is a subring of L containing A.

Example 2.1.3

The main example of integral closure we will be concerned with is

the arrow Z ↪→ Ok in the following diagram:

k Ok

Q Z

Proof: To see that A ⊆ B, note that a ∈ A satisfies the monic equation

x− a = 0.

If b1, b2 ∈ B, M1,M2 ⊆ L the finitely generated A-submodules given by

Lemma 1.2.6, satisfying b1M1 ⊆M1, and b2M2 ⊆M2.

Let M := M1 ·M2, the A-submodule of L generated by expressions m1 ·m2

with m1 ∈ M1, m2 ∈ M2. M is finitely generated since it is generated by
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This definition is also given above,
in the notes to Lecture 1, because I

jumped the gun a little bit.

the products of a set of generators for M1 and M2, which are themselves

finitely generated.

We claim that (b1b2)M ⊆ M . To see this, note that (b1b2)(m1m2) =

(b1m1)(b2m2) where we can commute elements since all of these elements

are contained in the field L, and since b1m1 ∈M1 and b2m2 ∈M2, it follows

that b1b2 ∈ B.

Moreover, (b1 + b2)M ⊆M . As above, we have

(b1 + b2)(m1m2) = b1m1m2 + b2m1m2 = (b1m1)m2 +m1(b2m2)

Then b1m1 ∈ M1 and b2m2 ∈ M2 by the above argument, so the above

expression is in M , from which it follows that b1 + b2 ∈ B. �

Definition 2.1.4: Integrally Closed Domains

An integral domain A is called integrally closed or normal if the

integral closure of A in the field of fractions of A is equal to A.

Example 2.1.5

Z ⊂ Q and k[x] ⊂ k(x) are integrally closed.

Proof: The proofs of these are essentially the same; the main point is that

both Z and k[x] are UFDs (unique factorization domains). Let g ∈ k[x],

which has unique decomposition

g(x) = p1(x)n1 · · · pr(x)nr

where the pi(x) are irreducible.

Then, suppose f ∈ k(x), which can be written by the above as

f(x) =
p1(x)n1 · · · pr(x)nr

q1(x)m1 · · · qs(x)ms

where the pi, qj are distinct and irreducible in k[x]. Suppose that f is

integral over k[x] with integral equation

f(x)n + an−1(x)f(x)n−1 + · · ·+ a0(x) = 0

The lead term of this equation is

p1(x)n·n1 · · · pr(x)n·nr

q1(x)n·m1 · · · qs(x)n·ms

Multiplying through the integral equation by q1(x)n·m1 · · · qs(x)n·ms , we get

an equation

p1(x)n·n1 · · · pr(x)n·nr + q1(x)m1 · · · qs(x)ms(· · · ) = 0

which implies that

q1(x)m1 · · · qs(x)ms
∣∣p1(x)n·n1 · · · pr(x)n·nr
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By convention, prime ideals are proper.

How I think about it: a local PID

(that’s not a field).

which is a contradiction (since we assumed pi, qj distinct and irreducible)

unless the denominator is equal to 1. �

Lemma 2.1.6

All UFDs are integrally closed.

The proof is exactly as above, and is essentially a generalization of the

Rational Root Theorem.

Discrete Valuation Rings

Definition 2.2.1

Principal Ideal Domains A principal ideal domain (PID) is an in-

tegral domain such that each ideal is principal, e.g, generated by a

single element.

Definition 2.2.2: Discrete Valuation Ring

A discrete valuation ring (DVR) is a PID with a unique nonzero

prime ideal. Equivalently, a DVR is a PID with a unique nonzero

maximal ideal.

Example 2.2.3

Let k ⊇ Q be a number field with ring of integers Ok, p ⊂ Ok
a prime ideal, Ok,p the localization of Ok at p. Ok,p is a discrete

valuation ring, and the one that we’ll be concerned with for the most

part.

Example 2.2.4

Consider k[[t]], with

f(t) = a0 + a1t+ · · ·

f ∈ k[[t]]× iff a0 6= 0. The way to see this is to write

(a0 + a1t+ a2t
2 + · · · )(b0 + b1t+ b2t

2 + · · · ) = 1

and obtain equations a0b0 = 1, a0b1 +a1b0 = 0 and so on by match-

ing coefficients. One can inductively show that each equation is

solvable if the first one, a0b0 = 1 has a solution b0, e.g, if a0 6= 0.

Therefore, one can see that all nonzero ideals in k[[t]] are (tr) for

r ≥ 0, from which it follows that k[[t]] is a PID, with unique prime

(maximal) (t).
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Establishing that I∞ exists might in-

volve the axiom of choice, I think that

this may have been mentioned in pass-
ing, but no such argument was written

down.

Also hidden in this proof might be a

proof that all DVRs are Noetherian.

I may have missed a step between the

I∞ part of the proof and the uniqueness

part, but this proof looks complete to
me.

Remark 2.2.5

As an informal organizing scheme, there are basically only two kinds

of DVRs: power series over fields, and p-adic type things.

Lemma 2.2.6

Let A be a DVR, m ⊂ A its maximal ideal, k = A/m. A generator

π ∈ m is called a uniformizer. Then every nonzero ideal I ⊂ A is of

the form (πr) for unique r ≥ 0.

Proof: Since A is a PID, I = (α). For the first case, I = A if and only if

α ∈ A× which in turn implies that I = (π0).

If I 6= A, I ⊆ (π) (since, by the axiom of choice, every ideal is contained in

some maximal ideal) which implies that α = α1π. Proceeding like this, we

can form an ascending chain of ideals:

I ⊂ (α1) ⊂ (α2) ⊂ · · · ⊂ (αn) ⊂ · · ·

where αnπ = αn−1. If (αn) = A for some n, we have

α = α1π = α2π
2 = · · · = αnπ

n

where αn is a unit (since the generator of the unit ideal must be a unit),

so (α) = (πn).

Otherwise, let I∞ =
⋃
n≥0(αn). Since A is a PID, I∞ = (β), β ∈ In for

some n, so I∞ = In. Then, the chain terminates after In, and we can repeat

the argument above.

For the uniqueness part of the statement, suppose that (πs) = (πt) for

ss ≤ t, that is, πs = vπt, which implies that vπt−s = 1. Thus (πt−s) = A,

from which it follows that t = s, since increasing powers of (π) are smaller.

�

This result induces the valuation on discrete valuation rings.

Definition 2.2.7: Valuations on DVRs

The valuation on a DVR A is a function ν : A \ {0} → Z≥0 sending

a to r such that (a) = mr. Moreover, this function can be extended

to the field of fractions K of A, e.g ν : K× → Z given by ν
(
a
a′

)
=

ν(a)− ν(a′).

ν has several nice properties which are easy to prove; ν : K× → Z is a

surjective homomorphism with ν(xy) = ν(x) + ν(y). Moreover, ν(x+ y) ≥
min(ν(x), ν(y)).
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Example 2.2.8

Let A = k[[t]] with m = (t). Then the valuation sends a power series

to the exponent of its lowest degree term.

Lemma 2.2.9

A \ {0} = {x ∈ K : ν(x) ≥ 0}

and

m \ {0} = {x ∈ K : ν(x) > 0}

We omit the proof here, but this is not difficult to show.

Example 2.2.10

Z(p) the localization of Z at the prime ideal (p), is a DVR, written

as a set as

Z(p) =
{a
b

: a, b ∈ Z, p 6 |b
}

The associated p-adic valuation of this DVR νp : Q× → Z sends an

integer to the exponent of p in its prime decomposition, with the

natural extension thereof to fractions. For example, ν3(9) = 2.



12 abhishek shivkumar

It’s an easy exercise to show that A is

a ring at all.

Also, the ∪{0} portion of the statement

of this lemma can be removed if one
adopts the convention that ν(0) =∞.

To see that the residue field of Z(p)

is Z/(p) without knowing any facts or

universal properties about localization,
note that (p) ∈ Z(p) consists of reduced
fractions with numerator divisible by p,

so the quotient ring Z(p)/(p) consists

of elements a
b

up to terms of the form
p c
d

where p does not divide a, b, or d.
Choosing d = b, since p is relatively
prime to a, for some choice of c, d|pc+a,

hence the only information of elements
in the quotient is the remainder of the
numerator upon division by p.

Math 254A: Introduction to Algebraic Number Theory Fall 2020

Lecture 3: 2 September

Professor Martin Olsson Abhishek Shivkumar

Discrete Valuation Rings

Lemma 3.1.1

Let K be a field, ν : K× → Z a surjective homomorphism such that

ν(x+ y) ≥ min(ν(x), ν(y)). Then

A = {x ∈ K× : ν(x) ≥ 0} ∪ {0}

is a DVR.

Proof: We will proceed by showing that for any π ∈ A such that ν(π) = 1,

any ideal I ⊆ A is of the form (πr) = (π)r for some r.

Let I ⊆ A be a nonzero ideal, then the set

{ν(x) : x ∈ I \ {0}} ⊆ Z≥0

has a minimal element, r, by the well-ordering property. Let α ∈ I be

an element achieving this minimum. Then for all x ∈ I \ {0}, ν
(
x
α

)
=

ν(x)− ν(α) ≥ 0 by assumption, so x
α ∈ A. Therefore, since x = x

αα and x

is arbitrary in I \ {0}, we can see that I = (α).

Note that a ∈ A such that ν(a) = 0 are units, since ν(a−1) = −ν(a) = 0,

so a−1 ∈ A. Let π ∈ A be an element with ν(π) = 1 (by surjectivity), with

ν(α) = r. Then ν
(
α
πr

)
= 0 whence α

πr ∈ A
× so that (α) = (πr) as claimed.

�

Example 3.1.2

Consider k[[t]] ↪→ k((t)) (where k((t)) is the field of fractions for

k[[t]], the ring of finite-tailed Laurent series); the valuation on k((t))

sends a Laurent series to the smallest integer with nonzero coefficient

in that series. For example, ν
(
π
t2 −

1
t + t325

)
= −2.

Example 3.1.3

Consider νp : Q× → Z the p-adic valuation, which sends a ∈ Z to the

power of p occurring in the prime factorization of a, with its natural

extension to fractions. The corresponding DVR by the above lemma



math 254: algebraic number theory 13

By Zorn’s lemma argument, I’m re-
ferring to the standard ring theoretic

equivalent form of the axiom of choice,

that every ideal is contained in some
maximal ideal.

is Z(p), with uniformizer p, and residue field Fp = Z/(p). To see the

latter point, note that

Z(p)/(p) ∼= (Z/(p))(p)

by exactness of localization, and the latter is isomorphic to Z/(p)
since localizing doesn’t do anything to a field.

Remark 3.1.4

Warning:

Z(p) 6= Zp = lim←−
n

Z/(pn)

The former is the localization of Z at (p), the latter are the p-adic

integers.

Theorem 3.1.5

Let A be a noetherian integral domain. Then A is a DVR iff the

following conditions hold:

1. A is integrally closed

2. A has a unique nonzero prime ideal

Proof: For the forward direction, if A is a DVR, the second condition is

obvious. The content of this direction is to show that noetherian DVRs are

integrally closed.

To that end, let K be the field of fractions of A, x1, · · · , xr ∈ K \ {0}, with

ν(xi) > ν(x1) for i > 1. Then,

x1 + · · ·+ xr 6= 0

To see this, divide the sum of the xi by x1, and obtain

1 +
x2

x1
+ · · ·+ xr

x1

Then all of the elements xi
x1

have strictly positive valuation, and are there-

fore contained in m, and therefore the above sum (which is 1 plus an element

of m) is a unit, since the maximal contains all non-units of A, else, it could

be made larger by adjoining non-units. Equivalently, if there is a non-unit

in the complement of m, by the usual Zorn’s lemma argument, it must be

contained in some maximal, which is a contradiction since m is unique.

Then, let x ∈ K \ {0} be integral over A, with

xn + an−1x
n−1 + · · ·+ a0 = 0

If ν(x) = s < 0, e.g, x 6∈ A, then ν(xn) = ns, and ν(aix
i) = ν(ai) + is ≥

is > ns where ν(ai) ≥ 0 since ai ∈ A. Then, by the result above,

xn + an−1x
n−1 + · · ·+ a0 6= 0
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This is a very clever trick, I don’t see

why or how anyone would ever think of
doing something like this.

That submodules of finitely gener-
ated noetherian modules are them-

selves finitely generated is a standard

result in commutative algebra that we
don’t prove here.

This is a consequence of Krull’s In-
tersection Theorem: if I is an ideal

in a noetherian ring R, and I is con-

tained in all maximal ideals of A, then⋂
n≥1 I

n = 0.

The final step of this argument, which
is omitted, is that z ∈ (x) for z ∈ m

arbitrary implies m ⊆ (x), which, by

maximality, implies m = (x).

from which it follows that ν(x) ≥ 0, e.g, x ∈ A.

For the reverse direction, the second condition tells us that A is a local ring

with unique nonzero maximal ideal m. Then consider

m′ := {x ∈ K : xm ⊆ A}

which is an A-submodule of K. Fix y ∈ m \ {0}, then multiplication by y

induces a map m′ ↪→ A (this map is an embedding since y is a unit in K).

Therefore, m′ ⊆ y−1A, and since y−1A is a finitely generated A-module,

since A is noetherian, m′ is a finitely generated A-module.

Therefore, by construction, m ⊆ m · m′ ⊆ A. There are two possibilities:

m ·m′ = m or A by maximality of m. We will prove the following:

1. If m ·m′ = A, then m is principal

2. If m ·m′ = m, then m′ = A

3. m′ 6= A

From these three results, it will follow that m = (π) is principal, and there-

fore that A is a PID; the final implication follows from the fact that for

any x ∈ A, (x) = (πr) for some r. To see this, if x 6∈ A×, (x) ⊆ m by the

fact that all ideals are contained in some maximal, and there’s only one

maximal ideal, then x = x1π. Then, either x1 is a unit, or x1 = x2π, and

so on, and this chain either terminates, or

x ∈
⋂
n≥0

mn = (0)

where the above equality is a general fact about noetherian local rings that

we will not show here.

Now we can prove our triplet of assertions to complete the proof:

1. If m ·m′ = A, then

1 =
∑
i

xiyi

with xi ∈ m, yi ∈ m′. Since m is a proper ideal, at least one of the terms

in the sum must be outside of m, so there most exist x ∈ m, y ∈ m′ such

that xy ∈ A \ m = A×. Therefore, by multiplying x by a unit in A, we

may assume that xy = 1. If z ∈ m, then x(yz) = z, but yz ∈ A by the

construction of m′, so m = (x), since z was an arbitrary element of m

and z ∈ (x).

2. If m ·m′ = m, let x ∈ m′, where xm ⊆ m by assumption. It follows that

xnm ⊆ m for all n ≥ 0, so xn ∈ m′ for all n ≥ 0. As we noted above, m′

is finitely generated, so the A-submodule M generated by xn for n ≥ 0
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These are a couple useful results from
Milne and Neukirch that I came across

while doing homework; including them
here for completeness.

is finitely generated (since submodules of finitely generated noetherian

modules are finitely generated). Say M is generated by 1, x, · · · , xr for

some r, then we can write an equation

xr+1 + arx
r + · · ·+ a0 = 0

Since A is integrally closed, we can conclude that x ∈ A, so m′ = A,

since x was arbitrary.

3. Let x ∈ m \ {0}, with A ⊂ Ax ⊆ K where the first inclusion is strict

since Ax is a field. To see this, note that the prime ideals of Ax are the

prime ideals of A which do not intersect the set {1, x, x2, · · · }; since the

nonzero prime ideal of A is unique and contains x, the only prime of Ax

is (0), from which it follows that Ax is a field. Moreover, Ax = K, since

the field of fractions has the universal property of being the smallest field

in which a given integral domain can be embedded.

Thus, every element of K can be written as y
xn for some y ∈ A, some

n. Fix z ∈ A \ {0}, with 1
z = y

xn ⇐⇒ xn = yz ∈ (z) ⊆ A. This

implies that there exists N s.t mN ⊆ (z) since m is finitely generated

(since A is noetherian). In particular, if we write m = (x1, · · · , xr), then

mN has as generators monomials in the xi whose exponents sum to N .

By making N sufficiently large, at least one exponent in each monomial

will therefore be large enough so that xni ∈ (z).

Applying this result with z ∈ m, we can see that there exists a smallest

choice of N s.t mN ⊆ (z), so mN−1 6⊆ (z). Fix y ∈ mN−1, y 6∈ (z), with

ym ⊆ (z) by assumption. Therefore, y
z ∈ m′ and y

z 6∈ A, since z ∈ m

implies that z is a non-unit, from which it follows that m′ 6= A.

�

Addendum

Proposition 3.2.1

Let K be the field of fractions of A, L a field containing K. If α ∈ L
is algebraic over K, then there exists nonzero d ∈ A such that dα is

integral over K.

Proof: Let α satisfy

αn + an−1α
n−1 + · · ·+ a0 = 0

by assumption, with ai ∈ K. Let d be a common denominator for the ai,

so that dai ∈ A for all i, and multiply through by dn:

(dα)n + an−1d(dα)n−1 + · · ·+ a0d
n = 0
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The following are homework problems

that we end up invoking in later proofs.

Therefore, dα satisfies an integral equation with coefficients in a since dai ∈
A. �

Corollary 3.2.2

Let A be an integral domain with field of fractions K, B the integral

closure of A in a field L containing K. If L is algebraic over K, then

L is the field of fractions of B.

Proof: Since every α ∈ L is algebraic over K, by the above proposition,

dα ∈ B for some nonzero d ∈ A, so each α ∈ L can be written as α = β
d

where β ∈ B, which is precisely a description of the field of fractions of B

(since K is the field of fractions for A, L a finite extension of K, only the

denominators change for the field of fractions of B). �

Proposition 3.2.3

Let K be the field of fractions of A integrally closed, L a finite

extension of K. α ∈ L is integral over A iff its minimal polynomial

over K has coefficients in A.

Proof: Let α ∈ L be integral over A satisfying

g(α) = αn + an−1α
n−1 + · · ·+ a0 = 0

with ai ∈ A. Let f ∈ K[x] be the minimal polynomial of α over K. Then,

by definition, f divides g in K[x], so all the zeros of f are zeros of g, and

therefore, are integral over A.

Therefore, since f splits into linear factors

f(x) = (x− α)(x− α2) · · · (x− αn)

in some field extension, with α and all the αi integral over A by the above

argument, we know that the coefficients of f are symmetric functions of the

roots, e.g, sums and products of the roots. Since integral elements form a

ring, the coefficients themselves are integral over A. Since A is integrally

closed, the coefficients are in A, from which the forward direction follows.

Conversely, if the minimal polynomial of α over K has coefficients in A,

then α is integral over A by definition. �

Proposition 3.2.4

Let A be an integral domain with field of fractions K, and let L/K

be a finite field extension. Let B be the integral closure of A in L. If

S is a multiplicative subset of A, then the integral closure of S−1A

in L is S−1B.

Proof: Let C be the integral closure of S−1A in L. It is clear that S−1B ⊆
C, since if b ∈ B satisfies the integral equation

bn + an−1b
n−1 + · · ·+ a0 = 0
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b
s ∈ S

−1B satisfies the following integral equation over S−1A, not A:

bn

sn
+
an−1

s

bn−1

sn−1
+
an−2

s2

bn−2

sn−2
+ · · ·+ a0

sn
= 0

Moreover, we can show that C ⊆ S−1B; note by Corollary 3.2.2 above

that L is the field of fractions of B. Let c ∈ C, with the following integral

equation over S−1A:

cn +
an−1

sn−1
cn−1 + · · ·+ a0

s0
= 0

Since c ∈ L, we can write c = b
a with b ∈ B, a ∈ A, whence our equation

becomes
bn

an
+
an−1

sn−1

bn−1

an−1
+ · · ·+ a0

s0
= 0

We want to show that a ∈ S, from which the result follows; to that end,

we rearrange our equation as

bn = −a
[
an−1

sn−1
bn−1 +

an−2

sn−2
bn−2a+ · · ·+ a0

s0
an−1

]
The left hand side is in B, so the right hand side must be as well. The

common denominator of the bracketed expression is in S, and a must clear

it so that the right hand side can be in B, so we must have that a ∈ S.

Therefore c = b
a ∈ S

−1B as claimed. �

Proposition 3.2.5

Let A be an integrally closed domain with field of fractions K. If

a monic polynomial f(x) ∈ A[x] is reducible in K[x], then f(x) is

reducible in A[x].

Proof: Fix

f = xn + an−1x
n−1 + · · ·+ a0 ∈ A[x]

which is reducible in K[x], e.g, f factors (possibly non uniquely) as

f = g1 · · · gn

with gi monic irreducible polynomials by moving units among the factors.

Let α be a zero of gi in some extension of K. Since gi is irreducible, gi is

a minimal polynomial for α; moreover, since α is a root of f , α is integral

over A. Therefore, by Proposition 3.2.3 above, gi has coefficients in A. �
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There’s some discussion about why the

primes in a localization are in bijec-
tion with primes in the original ring not

meeting the multiplicatively closed set.

This is a fairly standard result that’s
not hard to show, so I’m not going to

discuss it here.

Also some clarification here that the

complement of nonzero primes is a mul-

tiplicative subset, mostly review.

Math 254A: Introduction to Algebraic Number Theory Fall 2020

Lecture 4: 9 September

Professor Martin Olsson Abhishek Shivkumar

Dedekind Domains

As we’ve discussed before, the primary focus of this course is finite exten-

sions of Q (e.g, number fields) and their rings of integers. It turns out that

the ring of integers for a number field is a Dedekind domain, satisfying the

nice property that its localizations at nonzero primes are DVRs.

Definition 4.1.1: Dedekind Domains

A Dedekind domain is a noetherian integral domain which is inte-

grally closed and of dimension one, e.g, every nonzero prime ideal is

maximal.

Remark 4.1.2

The only “type” of Dedekind domain we’re going to encounter in

this course are rings of integers, another important type of Dedekind

domains is given by Γ(C,OC) where C is a smooth affine curve over

a field k.

Proposition 4.1.3

For a noetherian integral domain A, A is a Dedekind domain iff for

all nonzero prime ideals p ⊂ A, Ap is a DVR.

Proof: Suppose A is a Dedekind domain, p a nonzero prime ideal. By

Proposition 3.2.4, Ap is integrally closed. Therefore, by Theorem 3.1.5 we

need to check only that Ap has a unique prime ideal. But prime ideals in

Ap correspond to prime ideals in A contained in p (e.g, not meeting the

complement of p). Since A is dimension one by assumption, there can only

exist one such prime, p itself.

For the other direction, suppose Ap is a DVR for each prime p. To see that

A is one dimensional, suppose p ⊆ p′, then p corresponds to a prime ideal

in Ap′ , hence p = p′.

To see that A is integrally closed, suppose a ∈ K is integral over A, with K

the field of fractions of A. Then a ∈
⋂

pAp ⊂ K where the intersection is

taken over all primes p; to see this, note that since a is integral over A via a
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We will often omit the prefix “nonzero”

when discussing prime ideals; hope-

fully, the correct interpretation is clear
from context.

Not super sure of the minutiae of this
proof, but something like this should be

the answer.

I am not super sure of this line of rea-
soning either, I didn’t work out all the
details.

monic equation with coefficients in K, then the same equation shows that

a is integral over each Ap. Since Ap is integrally closed as above, a ∈ Ap

for each prime p, from which the result follows.

Then, let I = {x ∈ A : xa ∈ A} ⊆ A. This is clearly an ideal of A, and

Ip = Ap for all primes p by the above argument, so I is not contained in

any prime p (else I would be a strict ideal of some Ap). Therefore, since

A is one dimensional by the above argument, I = A, as every proper ideal

must be contained in some prime (equivalently, maximal) ideal. �

Definition 4.1.4: Fractional Ideals

Let A be a Dedekind domain, K its field of fractions. A fractional

ideal is a finitely generated A-submodule a ⊆ K. Equivalently,

a ⊆ K is a fractional ideal of A if there exists d ∈ A such that

d · a ⊆ A.

Given a fractional ideal a, define a′ = {x ∈ K : xa ⊆ A}. If σ ∈ a is

nonzero, then we have a map a′ ↪→ A given by x 7→ xσ, from which it

follows that a′ is finitely generated, since this map is an embedding and

submodules of noetherian modules are finitely generated.

Proposition 4.1.5

With a and a′ defined as above, aa′ = A.

Proof: Let p ⊂ A be a nonzero prime ideal. Then (ap)′ = (a′)p, that is,

the inverse of the localization of a is the localization of the inverse. To see

this, note the fact (or definition) that ap = Apa
′ ⊆ K; then, we have that

(a′)p = Ap · {x ∈ K : xa ⊆ A} (ap)′ = {x ∈ K : xApa ⊆ A}

The latter set is clearly equal to Apa
′ from which the result follows.

Therefore, if we can check this result at each localization, the “global”

result would follow; suppose ap(ap)′ = Ap for each nonzero prime p, then

consider A/a′, since a′ ⊆ A by construction and form an ideal since a is

an A-submodule. Here, we invoke an elementary result in commutative

algebra: a module M over a commutative ring is zero iff Mp = 0 for all

primes p in the base ring. Applying this to A/a′, together with some basic

lemmas about localizing quotients, the result follows.

Hence, we may reduce to the case where A is a DVR; however, we know

that a = mr = (π)r for some r by previous results, and it is clear by our

definition of a′ that a′ = (π−r), from which the result follows. �

Corollary 4.1.6

The fractional ideals of a Dedekind domain form a group.
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Note that there’s a small point of con-

cern when thinking of number fields as
being embedded in C, as the embed-

ding is not usually unique. We can usu-

ally avoid this by regarding the number
field in question as a polynomial ring

over Q modulo minimal polynomials,

thereby declining to provide an explicit
embedding.

There was some discussion here that
I didn’t completely follow of the field

automorphism σ : k → k given by√
D → −

√
D and using it to prove

the given result on Ok; in particular,

2a = α+ σ(α) and a2 −Db2 = ασ(α),

so Ok consists of those α such that
α + σ(α) and ασ(α) lie in Z (I think

these are the field trace and norm, re-

spectively).

Note that there is a map from K× to the group of fractional ideals, via

x 7→ x ·A ⊆ K. These ideals are called principal.

Definition 4.1.7: Ideal Class Group

The ideal class group or class group of a Dedekind domain A (de-

noted Cl(A)) is the quotient of the group of fractional ideals by the

group of principal fractional ideals. Equivalently, it is the cokernel

of the map described above.

Example 4.1.8

Let D be a square-free integer, k = Q(
√
D) ∼= Q[x]/(x2 −D) ⊂ C.

We claim that

Ok =

Z[
√
D] D ≡ 2, 3 (mod 4)

Z
[

1+
√
D

2

]
D ≡ 1 (mod 4)

To see this, note that the minimal polynomial of α = a+ b
√
D with

b nonzero is

(x− (a+ b
√
D))(x− (a− b

√
D)) = x2 − 2ax+ (a2 −Db2)

so if a, b ∈ Z, α ∈ Ok. However, we only need that 2a ∈ Z, so if

a = a′

2 for a′ ∈ Z, then, writing b = b′

2 , for a2−Db2 to be an integer,

we need Db′2 ≡ a′2 (mod 4). Clearly, since D is square-free, D 6≡ 0

(mod 4); if D ≡ 2, 3 (mod 4), since x2 ≡ 0, 1 (mod 4) for x ∈ Z,

by casework, one can see that the only solution is a′ ≡ b′ ≡ 0

(mod 2) whence a, b ∈ Z. The D ≡ 1 (mod 4) case is similar;

a′ ≡ b′ ≡ 0, 1 (mod 2). The former case gives Z ⊂ Ok, the latter

gives a+b
√
D

2 ∈ Ok.

Example 4.1.9

Let k = Q(
√
−5); since −5 ≡ 3 (mod 4), by the above example,

Ok = Z[
√
−5]. What is Cl(Ok)? We can’t calculate it yet, but we

can show that it’s nontrivial; the ideal I = (2, 1 +
√
−5) ⊂ Ok is

non-principal, and I2 = (2), so (2, 1 +
√
−5) represents a nontrivial

class in Cl(Ok) which squares to the identity, e.g, Z/(2) ⊆ Cl(Ok).

We will later see that, in fact, Z/(2) = Cl(Ok).

Note that by abuse of notation, we will often write Cl(k) instead of Cl(Ok)

when k is a number field. Also note that

Cl(Ok) = Pic(Spec(Ok))

where Pic denotes the Picard group of a scheme (or more generally, a ringed

space).
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Note that DVRs form a sort of trivial

class of Dedekind domains. DVRs do
not have interesting class group, since

all fractional ideals are principal.

I’d like to add more to this proof at

some point. I’m not sure how much

more there is to it, but the νp(I) = 0
for all but finitely many primes p asser-

tion seems nonobvious. These lecture

notes (linked) have a good outline of
the proof, might come back and fill in
some details.

Math 254A: Introduction to Algebraic Number Theory Fall 2020

Lecture 5: 14 September

Professor Martin Olsson Abhishek Shivkumar

Field Norm and Trace

Example 5.1.1

Let A be a DVR with maximal m, then its fractional ideals are of

the form mn for n ∈ Z. This follows from the fact that for each

fractional ideal a of A, there exists x ∈ A such that xa is an ideal of

A, e.g, xa = mk for some k ∈ N. x ∈ mr for a unique r ∈ N (where

N includes 0), from which it follows that a = mk−r.

Lemma 5.1.2

Let A be a Dedekind domain, then any fractional ideal a can be

written as

a =
∏
p6=0

pνp(a)

where νp(a) = 0 for all but finitely many primes p.

Proof: We will only sketch this result, assuming that νp(a) = 0 for all but

finitely many primes p; note that ap = Apa = (app)νp(a) by the example

above, since Ap is a DVR, with App its maximal ideal. Then, using the

elementary commutative algebra result that a module is zero iff all of its

localizations at primes are zero, the equality follows. �

Definition 5.1.3: Trace and Norm

Let L/K be a finite extension of fields, α ∈ L, and consider the map

·α : L→ L given by multiplication by L. This is a K-linear map of

finite dimensional K vector spaces, so we may define

trL/K(a) := tr(·a : L→ L) ∈ K NL/K(a) := det(·a : L→ L) ∈ K

the trace and norm respectively of a ∈ L with respect to K.

Example 5.1.4

Consider C/R, with C = R ⊕ R · i, with a ∈ C, a = α + βi. Then

https://math.mit.edu/classes/18.785/2015fa/LectureNotes3.pdf
https://math.mit.edu/classes/18.785/2015fa/LectureNotes3.pdf
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There are many different equivalent

formulations of separable extensions,
but this is the one that will help us in

this proof. As a guiding example, let
L = K[x]/(p) with p irreducible, then

this formulation of separable is equiva-

lent to the assertion that the roots of p
are distinct in in K, which is the nor-

mal definition of separable extensions.

There’s some business here about M
embedding into M ⊗A K, didn’t really

follow it. Doesn’t seem important to

the result.

Note that π(M) is meant to mean the

image of the image of M in Ar under
π.

Recall that the splitting lemma states

that, given a short exact sequence

0→ A→ B → C → 0

having a left split (a morphism B →
A composing to idA) is equivalent to
having a right split (a morphism C →
B composing to idC) which in turn is
equivalent to B ∼= A⊕ C.

I wonder if a five lemma argument

would work for this proof; there’s the
small issue of the induction ensuring
bounded rank without specifying the
rank.

the matrix of a with the standard basis of C over R is

(
α −β
β α

)
with trace 2α = a+ a and determinant (norm) α2 + β2 = aa.

Theorem 5.1.5

L/K is separable iff trL/K : L→ K is nonzero.

Recall that a field extension L/K is separable if, for any algebraic closure

K of K, the cardinality of the set of K-linear embeddings L ↪→ K is equal

to [L : K]. With this in mind, the proof of the above theorem will follow

over the course of the next few lemmas.

Lemma 5.1.6

Let M be a finitely generated torsion free A-module, A a PID. Then

M is a free module.

Proof: Note that this follows directly from the structure theorem for

finitely generated modules over a PID. Without that result, we can prove

this result as follows: since M is finitely generated and torsion free, there

is an inclusion M ↪→ Ar for some r given by picking generators for M and

looking at the coefficients.

Then, we can show that, in fact, M = Ar by induction. When r = 1,

M ↪→ A is an ideal, so M = (α), so there is an A-linear isomorphism

A
∼−→
·α

M . Assume the result holds for all s < r, that is, if M embeds into

As, then M is free of rank ≤ s. Then, let π : Ar → Ar−1 be the projection

onto the last r − 1 coordinates, e.g,

π(a1, · · · , ar) = (a2, · · · , ar)

and let M ′ = π(M) ⊆ Ar−1, M ′′ = ker(M → M ′). With these modules

defined, we have the following diagram:

0 M ′′ M M ′ 0

0 A Ar Ar−1 0π

The embedding in the first column is the natural one, given that M ′′ ⊆ Ar

consists of elements of the form (a1, 0, · · · , 0). By the inductive hypothesis,

M ′′ = A or M ′′ = 0. In the latter case, M ∼= M ′ which embeds into Ar−1,

in which case the result follows by induction. In the former case, by the

splitting lemma (since M → M ′ has an obvious splitting morphism), we

can pick a basis for M ′ (again by induction) and for M , from which the

result follows. �
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This is because an arbitrary linear

transformation a can be written as a
finite linear combination of the eijs.

That trV,K(eii) = [M : K] and

trM/K(1) = [M : K] is obvious by pick-
ing a basis for M over K and writing

out matrices; this is also probably ob-
vious without picking bases, just not

obviously obvious.

I don’t really understand the purpose

of this remark.

There’s really only one “kind” of purely

inseparable extension, L = K
(
α

1
p

)
and chains thereof where α ∈ K, p the

characteristic of L and K. It’s clear (I
think) that one can get prime powers

in the exponent of α by taking chains

of such extensions.

Example 5.1.7

Let k be a degree n number field, then Ok is a free Z-module of rank

n (we will later show that Ok is a finitely generated Z-module, which

we need to apply the result above). More generally, this implies that

OL is a free OK-module for a finite separable extension L/K.

Lemma 5.1.8

Let K ↪→ M ↪→ L be a sequence of finite field extensions. Then

trL/K = trM/K ◦ trL/M .

Proof: Let V be a finite dimensional M vector space, a : V → V an M -

linear transformation. Then trV,K(a) = trM/K(trV,M (a)) where the traces

involving V are the ordinary trace from linear algebra. To see that the

above equality holds, note that both sides are K-linear in a, so if we choose

a basis (and therefore write V = Mr for some r), it is suffices to prove

the equality for a = eij the matrix with a 1 in the i, j position, and 0s

everywhere else.

In the case where i 6= j, both sides are vacuously 0. If i = j, then the left

hand side is trV,K(eii) = [M : K], and the right hand side is trM/K(1) =

[M : K], from which the result follows. �

Remark 5.1.9

Note that trL/K is nonzero for a finite field extension L/K iff trL/K :

L → K is surjective (by K-linearity). Therefore, in the situation

above with K ↪→ M ↪→ L, if trL/M 6= 0 and trM/K 6= 0, then

trL/K 6= 0.

We will use, but not prove, the following fact from field theory: all finite

extensions factor as separable and purely inseparable, as in K ↪→ L factors

as K ↪→ KS ↪→ L where the first inclusion is separable, the second, purely

inseparable. By purely inseparable, we mean that each α ∈ L raised to

some power of p is an element of KS , where p is the characteristic of all

fields being discussed. The terminology “purely inseparable” is justified;

given α ∈ L with αp
k ∈ KS ,

xp
k

− αp
k

= (x− α)p
k

E.g, the minimal polynomial for α over KS has only one root: α.

Let’s show that trL/K = 0 if [L : Ks] > 1. It suffices to show by Lemma

5.1.8 that trLi/Li−1
is zero for some i in the chain

KS ⊂ L1 ⊂ L2 ⊂ · · · ⊂ Lr = L

where Li = Li−1(α
1
p ), α ∈ Li−1. It is enough to show that tr

((
α

1
p

)s)
= 0

for each s since these powers form a basis for Li/Li−1. When s = 0, the
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I’m not sure if there’s a direct natural

bijection between roots of p in K and

embeddings σ : L ↪→ K. For exam-

ple, with C = R[x]/(x2 + 1), the two
roots seem to naturally correspond to

the identity and conjugate embeddings

of C into itself.

There are a lot of missing steps in
this argument; we assume many results

from field theory and about traces, and
the exposition could be cleaned up a

lot. I don’t really understand why we
tensor up to L⊗KK. I also don’t really
see how we’ve shown that trL/K ⊗KK
is nonzero.

Professor Olsson later said that what
we achieve by tensoring up by K is “di-

agonalizing the multiplication map.”

corresponding matrix is the p × p identity which has trace 0 since we’re

working in characteristic p.

For s > 0, note that x 7→ xs permutes (without fixed points) the set{
α

1
p , α

2
p , · · · , α

p−1
p

}
, so the corresponding matrix is a permutation matrix

with all zeros on the diagonal, whence the trace is zero.

Therefore trL/K = 0 unless L/K is separable; then, we want to show that

trL/K 6= 0 when L/K is separable. To that end, fix K ↪→ K, then

L⊗K K ∼=
∏

σ:L↪→K

K

as K-algebras, where the product is taken over all K-linear embeddings

σ : L ↪→ K. This isomorphism follows from the fact that L = K[x]/(p) by

separability, so

L⊗K K ∼= K[x]/(p)

and p(x) splits into linear factors over K by algebraic closure. Each linear

factor of this splitting defines an element of the product on the right hand

side above via the Chinese remainder theorem, since there are as many

roots of L in K as deg p = [L : K] which is, by separability, equal to the

number of embeddings σ : L ↪→ K.

Then, we claim that

trL/K(a) =
∑

σ:L↪→K

σ(a)

To see this, consider trL/K ⊗KK : L⊗K K → K the extension of trL/K to∏
σ:L↪→K K. It is an easy exercise to show that this extension is in fact the

trace map on
∏
σ:L↪→K K over K, and is given by

trL/K ⊗KK(a1, · · · , an) = a1 + · · ·+ an

This is clearly nonzero in general, and therefore surjective, and since field

extensions are faithfully flat, trL/K is surjective as well, from which it

follows that trL/K is nonzero, which completes the proof. Moreover, since

trL/K ⊗KK extends trL/K , it follows that

trL/K(a) =
∑

σ:L↪→K

σ(a)

by evaluating the trace of a ∈ L as the trace of a⊗ 1 in L⊗K K.



math 254: algebraic number theory 25

I’m not sure about this whole section,

especially the last part. Is this the mor-

phism Professor Olsson described? It’s
the only one I can think of.

Note that (b, α) 7→ tr(bα) defines a
nonzero inner product from L×L to K,

and induces an isomorphism L
∼−→ L∗;

this was written down in our lecture
notes but I don’t see how it connects
to anything that follows. Maybe I need

to justify (Ad)∗ being free a little more.

Math 254A: Introduction to Algebraic Number Theory Fall 2020

Lecture 6: 16 September

Professor Martin Olsson Abhishek Shivkumar

Dedekind Extensions

Remark 6.1.1

If A ⊆ K integrally closed in its field of fractions K, B ⊆ L the

integral closure of A in L a finite separable field extension of K,

then trL/K : B → A. To see this, fix an algebraic closure K ↪→ K;

then for any b ∈ B, any σ : L ↪→ K, σ(b) is integral over A (since σ

fixes K, the integral equation for b is the integral equation for σ(b))

so trL/K(b) =
∑
σ:L↪→K σ(b) ∈ K is integral over A and contained

in K, hence is in A itself.

Theorem 6.1.2

Let A be a noetherian integrally closed domain, K its field of frac-

tions, L/K separable and finite; then the integral closure B of A in

L is a finitely generated A-module.

Proof: The idea of this proof is to produce an inclusion B ↪→M where M

is finitely generated; then, since submodules of finitely generated modules

over a noetherian ring are finitely generated, the result will follow. Choose

e1, · · · , ed ∈ B which form a basis for L/K; to do this, first choose a basis

for L over K, then, by the proof of Corollary 3.2.2, L is the field of fractions

for B, and consists of elements of the form b
a , b ∈ B, a ∈ A. Then, one

can “clear the denominators” of this basis (since the denominators may be

absorbed into the K-coefficients) to obtain a basis in B of L. This induces

in a natural way a morphism Ad ↪→ B given by looking at the span of the

ei with A-coefficients.

Define

B∗ = {b ∈ L : tr(bα) ∈ A ∀α ∈ B}

and

(Ad)∗ = {b ∈ L : tr(bα) ∈ A ∀α ∈ Ad}

Note that B ⊆ B∗ by the above remark on traces, so we have Ad ⊆ B ⊆
B∗ ⊆ (Ad)∗ where B∗ ⊆ (Ad)∗ by construction since B ⊆ L. However, Ad
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The above is the proof that Professor

Olsson covered in class; Eunice raised
several points of confusion within it, so

I’ve included the following alternative
proof from Milne. What follows com-

plements the above proof by showing

that (Ad)∗ as described is in fact the
dual of Ad.

Professor Olsson solved the latter state-
ment of this exercise via the univer-
sal property of localization; I prefer
to show the former statement (which

boils down to localization being an ex-
act functor in the category of modules
over A), and use it to infer the latter
statement from the fact that A/p must
be a field anyway in Dedekind domain,

since primes are maximal, so there is
nothing left to localize.

is a free module of rank d, and therefore, so is (Ad)∗; then B is contained

in a free (and therefore finitely generated) module, from which the result

follows by the noetherian assumption.

Alternatively, we may pick a dual basis e∗i of L/K such that Tr
(
eie
∗
j

)
= δij ,

and show that Ad ⊆ B ⊆ Ad where the latter Ad is generated by the dual

basis. To see the latter inclusion, fix β =
∑
i bie

∗
i ∈ B with bi ∈ K. If we

show that bi ∈ A, the result follows. As the ei are in B, so is βei, and so

Tr(βei) ∈ A. But we have that

Tr(βei) = Tr

∑
j

bje
∗
jei

 =
∑
j

bj Tr
(
e∗jei

)
=
∑
j

bjδij = bi

hence bi ∈ A for each i, from which the result follows, again by the noethe-

rian assumption. �

Remark 6.1.3

Note that B∗ is a finitely generated A-module in L, e.g, a fractional

ideal for B (assuming A Dedekind). Its inverse is called different,

which we will revisit when we discuss ramification.

Corollary 6.1.4

Let A be a Dedekind domain, then so is B with B, L, and K as

above.

Proof: Since B is a finitely generated A-module, B is noetherian, integrally

closed, so we only need to show that every nonzero prime ideal is maximal.

This follows from the following general fact: if A ↪→ B is an integral ex-

tension, p ⊆ q an inclusion of prime ideals of B and p ∩ A = q ∩ A, then

p = q. In this direction, consider the natural embedding A/(p∩A) ↪→ B/p;

we will show that q = 0 in B/p.

To see this, if q 6= 0, choose x ∈ q \ {0} and consider the integral equation

xn + · · ·+ a0 = 0

with a0 6= 0; then we can rewrite

a0 = −a1x− · · · − xn ∈ A ∩ q

so A ∩ q 3 a0. However, by assumption, A ∩ q = A ∩ p, so a0 = 0, which is

a contradiction, from which the result follows. �

Exercise 6.1.5

Show that

(A/p)p ∼= Ap/pAp

and that A/p ∼= Ap/pAp for A Dedekind.



math 254: algebraic number theory 27

Takes a little work to see that pB ⊆ q

is equivalent to p = q ∩A.

Below, we follow the proof in Neukirch.

Theorem 6.1.6: Fundamental Identity

Let A be a Dedekind domain, K its field of fractions, L/K a sep-

arable extension, B the integral closure of A in L (and therefore

Dedekind). Then, given p ⊂ A a nonzero prime ideal, a prime ideal

q ⊂ B divides p, denoted q|p if pB ⊆ q or, equivalently, p = q ∩ A.

Writing

pB =
∏
q|p

qeq

by the unique factorization of ideals in B, define fq as the degree

of field extension given by the natural map A/p → B/q. Then, if

[L : K] = n,

n =
∑
q|p

eqfq

Example 6.1.7

Consider Q(
√
D)/Q with D square free, and [Q(

√
D) : Q] = 2, then

we want to find the ways in which we can write

2 =
∑
q|p

eqfq

where the primes are taken in the respective rings of integers.

Clearly, without choosing p the only ways to obtain 2 as a sum of

positive integers is as 1 + 1 or 2, which factor as 1 · 1 + 1 · 1 and 2 · 1
respectively in the above formulation (up to combinatorics).

Proof: By the Chinese remainder theorem,

B/pB =
∏
q|p

B/(qeq)

as a vector space of dimension n over A/p. Then, setting k = A/p we want

to show that

dimk B/pB = n and dimk(B/(qeq)) = fqeq

from which the result will follow by taking the dimension of both sides of

the product decomposition for B/pB via the Chinese remainder theorem.

To see that dimk B/pB = n, note that B is finitely generated as an A-

module by Theorem 6.1.2, so let b1, · · · , bm ∈ B be representatives of a

basis of B/pB over k. It suffices to show that the bi are a basis for L/K,

from which it will follow that m = n.

Assume, for a contradiction, that the bi are linearly dependent over K, and

hence over A, and fix ai ∈ A such that

a1b1 + · · ·+ ambm = 0
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B = M ⊕ pB is essentially the asser-

tion of a split exact sequence, although

it’s not immediately obvious that this
should hold.

I don’t really get the surjectivity bit at

all.

Consider the ideal a = (a1, · · · , am) of A and fix a ∈ a−1 such that a 6∈ a−1p

(which we can choose since if a−1 = a−1p, then p is not proper), whence

aa 6⊆ p. Then the elements aa1, · · · , aam lie in A but not all lie in p since

aa 6⊆ p. Then, we have

aa1b1 + · · ·+ aambm ≡ 0 (mod p)

which gives a linear dependence of the bi over k, a contradiction, so the bi

are linearly independent over K.

To see that they form a basis, consider the A modules M = (b1, · · · , bm)A

and N = B/M . Since B = M ⊕ pB, pN = N . Moreover, since B is finitely

generated and noetherian (again by Theorem 6.1.2), N is finitely generated

with system of generators (say) α1, · · · , αs, with

αi =
∑
j

aijαj

for some aij ∈ p via pN = N . Let R be the matrix with entries (aij)− Is,
R̃ the adjugate of R, whose entries are rank s − 1 minors of R. Then, by

construction

R


α1

...

αs

 = 0 and R̃R = det(R)I

by the definition of the adjugate. Hence,

R̃R


α1

...

αs

 = 0 = det(R)


α1

...

αs


from which it follows that det(R)N = 0, since the αi generate N .

This implies that det(R)B ⊆ M = (b1, · · · , bm)A, since det(R) is nonzero;

to see this, by expansion, det(R) ≡ (−1)s (mod p) since aij ∈ p. It there-

fore follows that L = det(R)L = (b1, · · · , bm)K this time over K, where the

first equality follows from the fact that L is a field, and the second by the

fact that L is the field of fractions of B, consisting of elements of the form
b
a , b ∈ B, a ∈ A (by Corollary 3.2.2 and its proof), so the field of fractions

of det(R)B is det(R)L which must be contained in the field of fractions of

M = (b1, · · · , bm)A, which is (b1, · · · , bm)K . However, it is obvious that

(b1, · · · , bm)K ⊆ L, so they are in fact equal, and the bi form a K-basis for

L, from which it follows that m = n.

For the second claim, that dimk(B/(qeq)) = fqeq, consider the descending

chain

B/qeq ⊇ q/qeq ⊇ q2/qeq ⊇ · · · ⊇ qeq−1/qeq ⊇ (0)

of k-vector spaces. Each successive quotient between neighbors in this

chain, qr/qr+1, is isomorphic to B/q; to see this, pick α ∈ qr \ qr+1 and
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consider the homomorphism B → qr/qr+1 given by a 7→ aα. This map

clearly has kernel q and is surjective since qr = αB ⊕ qr+1.

Since fq = [B/q : k], we obtain dimk(qr/qr+1) = fq whence

dimk(B/qeq) =

eq−1∑
r=0

dimk(qr/qr+1) = eqfq

as desired. �
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In what follows, we will use the follow-

ing formulation of Nakayama’s lemma:

if M is finitely generated as an R-
module and the images of m1, · · · ,mn
of M in M/J(R)M generate it as an
R-module, they also generate M as an
R-module, where J(R) is the Jacobson

radical of R, the intersection of all max-

imal ideals in R.

Implicit in the use of this lemma in this

form is the fact that mBf is the inter-
section of all maximal ideals of Bf ; we

do not show this.

Math 254A: Introduction to Algebraic Number Theory Fall 2020

Lectures 7 and 8: 21-23 September

Professor Martin Olsson Abhishek Shivkumar

Number Rings and How To Find Them

Question 7.1.1

Consider K = Q(α) with α an algebraic integer satisfying some

f ∈ Q[x] (minimal and monic). Is f irreducible? What is OK?

We’ve completely solved this problem in the quadratic setting; to study

this problem in general, we want to understand the local setting e.g, if we

can understand OK,(p) for all primes (p) ⊂ Z, we will hopefully be able to

deduce some facts about OK .

To that end, let A be a DVR, K its field of fractions, k = A/m the residue

field, f ∈ A[x] a monic polynomial of degree n. Define Bf = A[x]/(f),

Bf := Bf/mBf = k[x]/(f) where f ∈ k[x] is the image of f .

Now, since k[x] is a UFD we can factor

f =
∏
i

gi
ni

with the gi irreducible. Choose lifts gi ∈ A[x] of the gi.

Lemma 7.1.2

The maximal ideals of Bf (which may not be integrally closed or an

integral domain) are given by mi := (mBf , gi) with Bf , gi and m as

above.

Proof: We have a chain

Bf � Bf = k[x]/
∏
i

gi
ni � k[x]/(gi)

where k[x]/(gi) since gi is irreducible by assumption, hence all the ideals

described in the lemma are in fact maximal (as they are the kernels of these

chains, and maximal ideals are precisely those ideals arising as kernels of

surjections to fields).

To see that these are the only maximals, suppose n ⊂ Bf is a maximal

ideal. If mBf 6⊆ n, then mBf + n = Bf by maximality (since this would
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This result feels right to me, but I think

some work would need to be done to
prove the last sentence formally.

There’s a remark here about how we
don’t really usually care about the

residue field extension being separable,

as it’s automatic for number fields, I
don’t really know what residue field
he’s referring to here.

I also don’t know precisely what I’m
supposed to understand from the fol-

lowing example. This probably stems
from my lack of understanding on what

residue field means in this context.
Probably Z/(p), so the example shows
what happens when f passes to f for

various (p) ⊂ Z. The cases where −5
is not a root (mod p) are probably the

unramified cases.

otherwise form a strictly larger ideal). Then, n generates Bf/mBf as an

A-module since every element of Bf can be written as a sum of elements

of n and mBf ; equivalently, we have a surjection n� Bf/mBf .

Then, by Nakayama’s lemma, since Bf is finitely generated as an A-module

(since f is monic), the surjection above guarantees that we can choose

n1, · · · , nr ∈ n ⊂ Bf which generate Bf/mBf ; hence, they also generate

Bf . Therefore, n = Bf , which is a contradiction, from which it follows that

every maximal ideal of Bf contains mBf .

Since all maximals containing mBf clearly arise from our chain of surjec-

tions above, the result follows. �

We can say more about Bf if we are willing to resort to casework; the first

is the so called unramified case.

Proposition 7.1.3

If f is irreducible then Bf is a DVR.

Proof: To see this, note that mBf is maximal, since Bf = Bf/mBf =

k[x]/(f) and k[x]/(f) is a field since f is irreducible. Therefore, by the

lemma, Bf is a local ring, and is noetherian since it is the quotient of A

which is noetherian. Therefore, picking a uniformizer π ∈ m, it follows from

one of our definitions of a DVR (noetherian local ring whose maximal is

principal, and not a field) that Bf is a DVR. �

Corollary 7.1.4

f as above is irreducible in K[x], and Bf is the integral closure of

A in K[x]/(f).

Proof: That f is irreducible in K[x] follows from the fact that A is a DVR

and hence integrally closed, together with the contrapositive of Proposi-

tion 3.2.5. That Bf = A[x]/(f) is the integral closure of A in K[x]/(f)

follows from irreducibility of f in K[x]. �

Corollary 7.1.5

If f is separable, then K[x]/(f) over K is unramified in the sense

that eq = 1 for all primes q ⊂ Bf with respect to some p ⊂ A.

Equivalently, a field extension L/K is unramified if OL/pOL is a

field, where p is the maximal ideal of OK .

Example 7.1.6

Consider Q(
√
−5)/Q with f(x) = x2 + 5. Let p be a prime, and

consider Z(p)[
√
−5] over Z(p). There are several cases: f factors as
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These random exercises are generally

what he gives us during our “break,”
and sometimes are not meant to be

solved during break. In particular,

this exercise was meant to warm us up
to discriminants, which we briefly dis-

cussed at the end of lecture.

It is at least clear that Z[α] ⊆ OK , but
that’s as far as we got.

Don’t really get the final step of the

argument that (mBf , x) = (x).

(x + a)(x − a) if −5 has a square root in Fp, and remains x2 + 5

otherwise with two exceptions.

If p = 5, x2 + 5 = x2, and if p = 2, x2 + 5 = x2 + 1 ∈ F2[x], which

is equal to (x+ 1)2.

Exercise 7.1.7

Prove that f(x) = x3 +x+ 1 is irreducible over Q and that if α ∈ C
is a root of f , then for K = Q(α), OK = Z[α].

We have thus far discussed the unramified case, where f is irreducible. The

other extreme is the so-called totally ramified case:

Definition 7.1.8

Let A be a DVR, then f ∈ A[x] is Eisenstein if

f(x) = xn + an−1x
n−1 + · · ·+ a0

with ai ∈ m for all i, a0 6∈ m2.

In terms of our example above, we can say that x2 + 5 ∈ Z[x] is Eisenstein

at (5).

Proposition 7.1.9

If f is Eisenstein, then Bf is a DVR with maximal ideal mBf = mnBf
where n = deg f .

Proof: f = xn in k[x] by assumption, since the other coefficients vanish

upon modding out by m. Then, by Lemma 7.1.2, it is clear that Bf is local

with maximal (mBf , x). Write f ∈ A[x] as

xn + an−1x
n−1 + · · ·+ a0

Since Bf = A[x]/(f), we have

xn + an−1x
n−1 + a1x = −a0

as elements of Bf , since f = 0 ∈ Bf .

Then since the ai ∈ m by assumption, the right hand side is in m, so the

left hand side must be as well, which implies that (mBf , x) = (x), from

which it follows that Bf is a DVR since its maximal is principal. �

Corollary 7.1.10

f is irreducible in K[x] and Bf is the integral closure of A in L =

K[x]/(f).
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I have no idea what he means by guess

and check here, probably because we

didn’t finish defining everything. I also
do not know what it means for a sub-

ring R ⊆ OK to “generate” K.

For example, if M =
⊕n
i=1 A · ei, then

∧nM = Ae1 · e2 · · · en.

Discriminants

Recall our exercise above, where we wanted to show that OQ(α) = Z[α] for

some specific algebraic number α. Clearly, Z[α] ⊆ OQ(α), how do we show

that this containment is in fact equality? To this end, we will develop the

theory of discriminants, which basically is a high level way to guess and

check.

More generally, let K/Q be a number field, OK its ring of integers, R ⊆ OK
a subring which generates K. How can we tell whether R = OK?

Towards answering this, we will develop the theory of discriminants. First,

we have an informal “definition” for number fields: with K = Q(α) we

define the discriminants disc(Z[α]) and disc(OK) by

disc(Z[α]) = (lengthOK/Z[α])
2

disc(OK)

where all the values in this equality are integers.

To resolve the difficult portion of our exercise above, e.g, to show that

OK = Z[α], we can show that discZ[α] = −31 and hence cannot be equal

to an integer squared times an integer unless the integer squared is 1, e.g,

if lengthOK/Z[α] = 1 which implies that Z[α] = OK , as desired.

More generally, let A be a ring, M a free finitely generated A-module

(although projective suffices), t : M × M → A a bilinear pairing (the

one we will care about generally is (x, y) ∈ OK × OK mapping down to

Z via (x, y) 7→ tr(x · y)). Clearly, this is equivalent to t : M → M∗ =

HomA(M,A) given by x 7→ t(−, x). This is a map of free A-modules.

Take ∧nM → ∧nM∗ induced by t, where n is the rank of M , whence

∧nM := detM is free of rank 1, and t goes to det t.

Definition 7.2.1: Discriminants

With M , A as above, we can think of the map above as (∧nM)⊗2 →
A (the determinant map) which defines an ideal; this ideal is called

the discriminant, denoted δ(M,t).

When M = K and A = Z, and with the pairing as above, (x, y) ∈ OK ×
OK 7→ tr(xy), the discriminant ideal δ(K/Q) ⊆ Z is clearly associated to an

integer since Z is a PID, whence we refer to the discriminant as an integer

via abuse of notation.

A quick aside on determinants, for those who haven’t seen them in this form

before: choose a basis ei for M , and let M∗ = HomA(
⊕

iA·ei, A) =
⊕

iAe
∗
i

where e∗i is a map

e∗i :
⊕
i

AeI → A
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In particular, since v ∧ v = 0 by the

alternating property, clearly we have
to choose a distinct j in each of the

r sums on the right hand side of the

map above, which defines a permuta-
tion, and we can move e∗

σ(1)
∧· · ·∧e∗

σ(r)

to e∗1 ∧ · · · ∧ e∗r with sign(σ) permuta-

tions, from which we recover the defi-

nition of the determinant.
There’s some discussion here of the

construction of the exterior product,

which I didn’t write down.

The proof above is a little wonky, but
I’m not going to worry about it.

which takes ej to 1 if i = j, otherwise, to 0.

Then, given a map t : M ×M → A, we can rewrite this as a map M →M∗

with M =
⊕

iAei, M
∗ =

⊕
Ae∗j . Without any information about this

map, it must clearly take the following form (given the bases we’ve chosen):

ei 7→
∑
j

t(ei, ej)e
∗
j

Form the matrix T whose i, jth entry is t(ei, ej). This matrix defines a map

from Ar to itself, where Ar = M = M∗ by the bases we’ve chosen above

(where the size of our basis is r). Then, taking the top exterior power of

both sides, we have that

∧rM = Ae1 ∧ · · · ∧ er ∧r M∗ = Ae∗1 ∧ · · · ∧ e∗r

and the corresponding map between the top exterior powers is detT ; to see

this, note that we must have

e1 ∧ · · · ∧ er 7→

∑
j

T1je
∗
j

 ∧ · · · ∧
∑

j

Trje
∗
j


Then, to rewrite this sum in terms of our chosen basis vector of ∧rM∗

(which is one-dimensional), we can see via the alternating property of the

exterior power (v ∧ w = −w ∧ v) that we recover the alternating sum of

products over permutations formulation of the determinant.

Suppose now that M ′ ↪→ M where M ′ and M both are free of rank n.

Then detM ′ ↪→ detM are both free of rank 1, so this inclusion gives an

ideal a ⊆ A where a = detM ′ ⊗ (detM)−1. Let t′ : M ′ ×M ′ → A be the

restriction of t as above to M ′.

Lemma 7.2.2

With M , M ′, t, t′, and a as above,

δ(M ′,t′) = a2δ(M,t)

Proof: We have

M ′ ↪→M
t−→M∗ ↪→M ′∗

and this chain of compositions is equal to t′. Taking the determinant of

this chain, we have

detM ′ ↪→ detM
det t−−−→ detM∗ ↪→ detM ′∗

As above, this chain of compositions is equal to det t′, and the first and last

inclusion both have image isomorphic to a, hence the image of det t′ is the

image of det t multiplied with a2 as claimed. �
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(5) splits as (1 + 2i)(1 − 2i) in Z[i],
as (
√

5)2 in OQ(
√
5), and stays (5) in

Z[
√

2]. These are the three possible
things that can happen via the funda-

mental identity: the prime either splits

into two different primes (as in Z[i]),
becomes a prime squared (as in Z[

√
2]),

or stays the same.

Remark 7.2.3

Given L′ ↪→ L an inclusion of free modules of rank 1, L′ = aL for

some ideal a ⊆ A, since we can choose a basis for L and our inclusion

becomes L′ ↪→ A.

Example 7.2.4

Consider Q(
√
D)/Q with D square free, and write Z[

√
D] = Z ⊕

Z
√
D which is free of rank 2 over Z. We know that Z[

√
D] ⊆

OQ(
√
D).

Recall that tr
(
a+ b

√
D
)

= 2a; rewriting the natural trace pairing

as a map Z[
√
D]→ Z[

√
D]∗, with basis e1 = 1, e2 =

√
D for Z[

√
D],

we have that 1 7→ tr(−) = 2e∗1 and
√
D 7→ tr

(√
D · −

)
= 2De∗2.

Then, one can see that the discriminant of Z[
√
D] is

det

(
2 0

0 2D

)
= 4D

By Example 4.1.8, we know that if D ≡ 1 (mod 4), OQ(
√
D) =

Z
[

1+
√
D

2

]
, so

Z⊕ Z
√
D ↪→ Z⊕ Z

1 +
√
D

2
= OQ(

√
D)

Since this is an inclusion of free modules of the same rank, the

corresponding ideal by the above discussion is a = (2) (this is easy to

see by drawing a lattice; Z[
√
D] hits half of the points of Z

[
1+
√
D

2

]
),

from which it follows by the lemma that δ(OQ(
√
D),tr)

= (D) for D ≡ 1

(mod 4). Otherwise, the discriminant is (4D) as above, since Z[
√
D]

is the entire ring of integers.

Exercise 7.2.5

Consider (5) ⊂ Z. What happens to (5) in the rings of integers of

Q(i), Q(
√

2), and Q(
√

5)?

Galois Theory

Let A be a Dedekind domain, K its field of fractions, L/K a Galois exten-

sion with Galois group G, B the integral closure of A in L.
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This is a little tricky to wrap my head

around, should revisit to make sure I
really understand what’s going on here.

That the extension is Galois implies that

NL/K(x) =
∏

σ:L↪→K

σ(x) =
∏
g∈G

g(x)

and similarly for trL/K , so we don’t need to consider an algebraic closure

(C in all the cases we care about). The above equality is true because,

fixing some σ : L ↪→ K, first applying some Galois automorphism to L and

then applying σ gives a set of n distinct embeddings of L into K. Since the

degree of the Galois extension is equal to both the size of the Galois group

and the number of embeddings L ↪→ K, it follows that all embeddings are

generated by a single embedding up to Galois automorphisms.

Moreover, G acts on B over A; given b ∈ B ⊂ L, b satisfies some equation

xn + an−1x
n−1 + · · ·+ a0 = 0

so for all g ∈ G, g(b) also satisfies this equation since g(ai) = ai by assump-

tion. Thus g(b) ∈ B.

Now, we will state an important lemma that will be widely applicable

throughout the rest of course.

Lemma 7.3.1: Approximation Lemma

Let pi be distinct prime ideals for 1 ≤ i ≤ k of A Dedekind, xi ∈ K
the field of fractions of A, ni integers. Then there exists x ∈ K such

that νpi(x− xi) ≥ ni for all i and νq(x) ≥ 0 for q 6= p1, · · · , pk.

Proof: Suppose first that the xi are in A, and we will seek a solution

x ∈ A. We may assume that x2 = · · · = xk = 0; to see this, suppose we

want to find x where x− x1 and x− x2 have valuations bounded below as

prescribed, suppose we can find y s.t νp1
(y−x2) and νp2

(y) are sufficiently

large, and similarly find z s.t νp2
(z − x2) and νp1

(z) are sufficiently large,

then set x = y + z. Then

νp1
(x− x1) = νp1

(z + y − x1) ≥ min(νp1
(y − x1), νp1

(z))

and similarly for p2, so x = y + z satisfies the given requirements. Hence,

by linearity and induction, it suffices to show the result when x2 = · · · =

xk = 0.

Then, increasing the ni if necessary, we may assume that ni ≥ 0. Set

a = pn1
1 + pn2

2 pn3
3 · · · p

nk
k

Then νp(a) = 0 for all p since only the pi could have positive valuation on

a, and clearly, by construction, none of them can. Therefore, a = A. It

follows that x1 = x + y with y ∈ pn1
1 , x ∈ pn2

2 pn3
3 · · · p

nk
k . Then x has the

desired properties, e.g,

νp1
(x− x1) = νp1

(y) ≥ n1
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and

νpr (x) ≥ nr

for r > 1, and νq(x) ≥ 0 for q 6= p1, · · · , pk since x ∈ A.

Then, in the general case, write xi = ai
s , ai ∈ A, s ∈ A, s 6= 0, x = a

s . The

element a must satisfy

νpi(a− ai) ≥ ni + νpi(s) and νq(a) ≥ νq(s)

Since s is fixed, we can find a satisfying the first condition for all i by the

first part above, and the second condition can also be handled by the first

part, since νq(s) > 0 for only finitely many primes q, so we can just add

these primes to the pi. �

Consider the set

Sp = {q ⊂ B : q ∩A = p} = {q ⊂ B : q|p}

for some prime p ⊂ A. Gy Sp via the action on B described above.

Lemma 7.3.2

G y Sp is transitive, i.e, for all q, q′ ∈ Sp, there exists g ∈ G s.t

gq = q′.

Proof: Fix q|p, and suppose there exists q′|p such that q′ 6= gq for any

g ∈ G. By Lemma 7.3.1 (the approximation lemma), there exists x ∈ q′,

x 6∈ gq for all g ∈ G (taking gq for to be our finite set of primes, with

νgq(x− 1) ≥ 0 (whence x 6∈ gq), νq′(x) ≥ 1).

Hence, N(x) =
∏
g∈G g(x) ∈ p = q′∩A. Hence N(x) ∈ q′, N(x) 6∈ q, which

is a contradiction since any element of p is in q. �

Define gp to be the number of primes q ⊂ B such that q|p, ep the ramifica-

tion index of any q|p, fp the degree of the residue field extension. Then our

Fundamental Identity, Theorem 6.1.6, becomes n = gpepfp, since ep and fp

are constant across q|p, since all such q are equivalent by the above lemma,

via the Galois action.
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For posterity, recall that an extension

is Galois if it is separable and normal.
L/K is separable if for every α ∈ L,

the minimal polynomial of α over F is

separable, it doesn’t have any repeated
roots. L/K is normal if every polyno-

mial that is irreducible over K either

has no roots in L or splits into linear
factors in L.

Math 254A: Introduction to Algebraic Number Theory Fall 2020

Lecture 9: 28 September

Professor Martin Olsson Abhishek Shivkumar

Decomposition and Inertia Groups

Consider our standard setup, e.g, A a Dedekind domain, K its field of

fractions, L a Galois extension, B the integral closure of A in L, G the

Galois group of L over K. Prime ideals p in A factor into prime ideals qi in

B by prior results, and by Lemma 7.3.2, the induced action on the prime

ideals of B is transitive.

Definition 8.1.1: Decomposition Groups

Given q|p as above, define Dq ⊂ G the decomposition group given

by

Dq = {g ∈ G : gq = q}

the stabilizer in G of q ∈ Sp.

Note that for h ∈ G, Dhq = hDqh
−1, so the choice of representative of an

orbit of primes doesn’t matter, up to conjugation. Consider the following

diagram:

L B l = B/q

K A k = A/p

We assume that k is perfect, i.e, its finite extensions are separable. From

this diagram, we obtain a map ε : Dq → Aut(l/k), since Dq y B descends

to Dq y B/q, and Dq fixes A and therefore fixes k.

Proposition 8.1.2

l/k is Galois, and ε is surjective.

Proof: Since k is perfect, l is finite over k since L is finite over K, so l/k is

separable. We need to show that l/k is normal, e.g, irreducible polynomials

in k either split into linear factors in l or don’t split at all. Fix a ∈ l, f ∈ k[x]

its minimal polynomial. Fix k ↪→ k, in which f factors as

f(x) = (x− a)(x− γ1) · · · (x− γd)
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There’s a discussion in the middle of

this about showing that if

f(x) =
∏
S⊆G

(x− σ(a))

then S = Dq. I can’t tell why this
would be essential to showing that l/k

is Galois, and I don’t know which part

of our argument implies this.

In the language of the Approxima-
tion Lemma, a ∈ σ(q) translates to

νσ(q)(a) ≥ 1, and a 6∈ q translates to
νq(a− 1) ≥ 1. Since a− 1 ∈ q, a 6∈ q.

Most of what follows is completely

opaque to me. I tried to resuscitate
this section by reading section I.9 in
Neukirch, but I wasn’t able to com-

pletely reconstruct it. I’ve tried to just
say what was said in class, which I

think was not a complete proof of ev-
erything asserted. Might revisit this
later.

We wish to show that the γi lie in l.

Fix a ∈ B mapping to a ∈ l, and consider

g(x) =
∏
σ∈G

(x− σ(a)) ∈ A[x]

To see that g ∈ A[x], note that A = BG, the set of G-invariant elements of

B. It follows that A = LG ∩B where LG = K since L/K is Galois. Then

τg(x) =
∏
σ∈G

(x− τσ(a)) = g(x)

where the last equality is from the fact that τ just reorders our product, so

g ∈ A[x] since τ was arbitrary in G and preserves g.

Then, g(x) is a product of linear factors with a as a root, so f(x) divides

g(x), so all roots of f are among the roots of g, from which it follows that

f splits into linear factors. Since a was arbitrary in l, it follows that l/k is

Galois.

It remains to show that ε : D → Aut(l/k) is surjective. To that end, we will

use Lemma 7.3.1: choose a ∈ B \ q such that a ∈ σ(q) for all σ ∈ G \Dq.

Consider

g(x) =
∏
σ∈G

(x− σ(a))

Then

g(x) = xk
∏
σ∈Dq

(x− σ(a))

for some k, where some of the linear terms in g become factors of the xk

(e.g, for σ−1 ∈ G \Dq in the product for g, σ−1(a) ∈ q and collapses to 0

in the quotient). Thus, every conjugate of a is of the form ε(σ)(a) for some

σ ∈ Dq, since the surviving terms in the expansion of g(x) contain precisely

those σ in the image of ε. Since all conjugates of a are achievable by the

action of Aut(l/k) (by definition of the Galois group), it follows that ε is

surjective as claimed. �

The kernel of ε is the inertia group, e.g, we have an exact sequence

0→ Iq → Dq → Aut(l/k)→ 0

Therefore, by the Galois correspondence, we have a sequence of subfields

K ↪→ LDq ↪→ LIq ↪→ L

where L/K has Galois group G, L/LIq has Galois group Iq, and L/LDq

has Galois group Dq.

Fix some prime p ⊂ A, which factors into the product of some primes q
Dq

i ⊂
BDq . The induced Galois action of Dq on BDq fixes q

Dq

i by assumption,

so there is exactly one prime in B over each q
Dq

i , q itself.
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This section seems to have been a quick

aside at the end of lecture to make sure
we’re all on board for p-adic numbers

and completions in general, probably in

preparation for next lecture.

Therefore, since Dq is the Galois group for L/LDq , we have that

|Dq| = [L : LDq ] = 1 · e(q/qDq) · f(q/qDq)

What this tells us is that the identity [L : K] = eqfqgq factor into a

sequence of maps: L ↪→ LDq gives us gq, and each prime is unramified

and has inertia degree 1. LDq ↪→ LIq gives us fq with a single unramified

prime, and LIq ↪→ L gives us eq. Hence, the decomposition group allows

us to “factor” our fundamental identity into three separate embeddings.

Exercise 8.1.3

Let L = Q(i,
√

2,
√

5) over Q, with Galois group (Z/(2))
3
. Factor

Q ↪→ L as above to obtain eq, fq, and gq for p = (5).

Complete Fields

Recall that the p-adic integers are defined as

Zp := lim←−
n

Z/(pn)

which is the completion of Z with respect to the ideal (p), or the p-

adic completion. The inverse limit can be described explicitly as elements

(a1, a2, · · · ) with ak ∈ Z/(pk) and ak+1 7→ ak under the natural map

Z/(pk+1)→ Z/(pk).

Equivalently, there is a categorical definition of the inverse limit (which is

in fact a categorical limit, for reasons passing understanding) as the limit of

the diagram of projections Z/(pm)→ Z/(pn) for m > n (with the obvious

generalization to general I-adic completions).

Our guiding principle for completion is meant to be k[x] completed with

respect to (x), which produces the power series ring k[[x]].
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In what follows, we show that Zp is a

local PID, but a DVR is additionally

not a field. It’s slightly nontrivial to
see that there are non-units in Zp, I as-

sume this step is what is handled by

Proposition 2 on page 7 of Serre’s Lo-
cal Fields; Professor Olsson points us

to this result at the end of his proof.

Also, the final stage where the sequence
of ideals stabilizing implies that I =

pkZp is not entirely clear to me.

There’s some discussion at the end of

this proof of how ·p : Zp → Zp is injec-
tive, but I didn’t follow it or see why it
is necessary to show that Zp is a DVR.
That paragraph of my notes is omitted,
at least until Professor Olsson posts his

lecture slides.

Math 254A: Introduction to Algebraic Number Theory Fall 2020

Lecture 10: 30 September

Professor Martin Olsson Abhishek Shivkumar

Completions

We’ve discussed localizations both concretely (in terms of the inverse limit

construction) and abstractly (in terms of categorical limits). We now offer

an intermediary conception: Zp is the equalizer of the following diagram:∏
n≥1

Z/(pn)⇒
∏
n≥1

Z/(pn)

where the top arrow is the identity, and the bottom arrow is the shift map,

taking (a1, a2, · · · , ) to (a2 mod p, a3 mod p2, · · · ). It can be seen with

some work that the equalizer condition encodes the compatibility data of

the inverse limit, e.g, that the ai form a “compatible collection” of elements.

Lemma 9.1.1

Zp is a discrete valuation ring.

Proof: First note that the ideals in Z/(pn) are (pk) for 0 ≤ k ≤ n, since

ideals in Z/(pn) are ideals in Z containing (pn), and ideals in Z containing

(pn) correspond to divisors of pn, which are precisely pk for 0 ≤ k ≤ n as

above.

Moreover, if I ⊂ Zp is an ideal, and In ⊂ Z/(pn) its image, then we have

the following diagram:

· · · In+1 In In−1 · · ·

· · · Z/(pn+1) Z/(pn) Z/(pn−1) · · ·

Since for each n In = (pk) for k ≤ n, there are two options: if In = (pn)

for each n, then I = (0). Otherwise, for some n, In = (pk) with k < n, in

which case Im = (pk) for all m > n (keep in mind that these ideals appear

to be the same, but they live in different rings and are not equal as sets).

In this case, clearly I = pkZp. Therefore, the ideals of Zp are of the form

(pk) and clearly the only maximal ideal is (p) = pZp itself, so Zp is a local

PID, and therefore a DVR. �
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Need to check: that a is in fact a well-

defined element of Zp and that it is the
limit of (xn)n≥1.

Definition 9.1.2: p-adic Numbers

With Zp as above, fix Qp as its field of fractions, the field of p-adic

numbers. Since Zp is a DVR, we have νp : Q×p → Z. We may use

this valuation to define the so-called p-adic norm,

|·|p : Qp → R≥0

given by |x|p = p−νp(x) and |0|p = 0.

It is easy to check the usual norm properties for |·|p, which inherit from

the familiar properties of the p-adic valuation. For what follows, note that

when we discuss norms in general, we will exclude the trivial norm given

by |x| = 1 for all x ∈ Q∗p, |0| = 0.

From this norm, we can construct in the normal way a metric (d(x, y) =

|x− y|p) which provides a topology on Qp. Recall that a sequence (xn)n≥1

in Qp is Cauchy if for every ε > 0 there exists N such that |xn − xm|p < ε

for all n,m ≥ N .

Proposition 9.1.3

Every Cauchy sequence is convergent in Qp, e.g, Qp is a complete

metric space.

Proof: Fix a Cauchy sequence (xn)n≥1 in Qp. Recall that Zp = {x ∈
Qp : |x|p ≤ 1} which just says that νp(x) ≥ 0, precisely the condition for

x ∈ Zp. If |xn − xm|p ≤ 1, then xn = xm + y for some y ∈ Zp, hence

xn ∈ Zp ⇐⇒ xm ∈ Zp. Via the Cauchy property, we may assume that

|xn − xm| ≤ 1 for all m,n by choosing some tail of our original sequence

associated to ε = 1 (since convergence does not care about any finite number

of lead terms). Multiply this new sequence by pr for some r, and we can

therefore assume that xn ∈ Zp for all n; this follows from the fact that now,

xn ∈ Zp if and only if x1 ∈ Zp, so we can multiply x1 by some power of p

such that prx1 ∈ Zp, from which it follows that the entire sequence is in

Zp.

For every s, consider the sequence xn := xn (mod ps) in Z/(ps). Each of

these sequences is eventually constant by the Cauchy property, since for

x, y ∈ Zp, |x− y|p < p−s ⇐⇒ νp(x− y) > s, which implies that x = y in

Z/(ps). Call the limit of this sequence as, and form a = (as)s≥1. We claim

a is the limit of our sequence (xn)n≥1, from which the result follows. �

This result gives us an alternate description of Qp: let C be the ring of

Cauchy sequences (with respect to |·|p) in Q, whose ring structure arises

from element-wise addition and multiplication. Consider I ⊂ C the ideal of

Cauchy sequences converging to 0.
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I filled in my own argument for this

proof because I really didn’t under-
stand what Professor Olsson was say-

ing. It’s not a very complicated result,
unless this proof is wrong, in which case

it is Fields Medal-level stuff.

Before we can prove the following lemma, we need a quick aside on the

formal power series formulation of Zp and the formal Laurent series formu-

lation of Qp. In particular, given a = (a1, a2, · · · ) ∈ Zp, we may represent

a as a power series in p, with coefficients between 0 and p − 1 (inclusive).

This is easy to see via construction: suppose

a = b0 + b1p+ b2p
2 + · · ·

Then we need the projection of a to Z/(pn) to be an. When n = 1, this gives

us b0 = a1 (choosing a1 between 0 and p − 1), n = 2 gives us b1 = a2−a1
p ,

and so on, with bn = an−(b0+b1p+···+bn−1p
n−1)

pn .

If p does not divide n, then n is invertible in Zp, since the class of n is

invertible in each Z/(pk). One could also see this by noting that Zp is local

with maximal (p). Therefore, for nonzero elements a of Zp, only finitely

many of the lead terms ai can be 0, so p−ka ∈ Z×p for some k. Therefore,

writing a as a power series in p, p−k is a formal Laurent series in p as

claimed, from which it follows (since a is an arbitrary nonzero nonunit)

that Qp consists of formal Laurent series in p, with coefficients as above.

Lemma 9.1.4

I is a maximal ideal, and C/I ∼= Qp.

Proof: Consider the map C → Qp taking (xn) to its limit (which exists by

the above proposition). Clearly, the kernel of this map is I, and the map

is surjective; to see this, fix a ∈ Qp and write its Laurent series as

a−np
−n + a−n+1p

−n+1 + · · ·+ a0 + a1p+ · · ·

with 0 ≤ ai < p. Then take the Cauchy sequence of partial sums of

the above Laurent series in C which clearly maps to a. This sequence

is Cauchy since for sufficiently large m,n, the valuation of the difference

νp(an+1p
n+1 + · · ·+ amp

m) ≥ n+ 1, so
∣∣an+1p

n+1 + · · ·+ amp
m
∣∣
p
≤ 1

pn+1 .

The kernel of this map is clearly I, and so by the first isomorphism theorem,

C/I ∼= Qp, from which it follows that I is maximal since Qp is a field. �

Exercise 9.1.5

Let p, q be prime numbers. Show that |·|p and |·|q define the same

topology on Q ⇐⇒ p = q.

Only the forward direction is nontrivial, so consider the sequence (pk)k≥1

which goes to 0 in |·|p, but
∣∣pk∣∣

q
= 1 for all k, since pk is a unit for p 6= q,

so (pk) cannot go to zero with respect to |·|q unless p = q. It follows that

|·|p and |·|q define inequivalent topologies when p 6= q since some sequences

converge in one and not the other.

Moving away from the p-adic norm for a moment, consider a more general
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The archimedean case is more techni-

cal, and is available to those who seek
it in Neukirch.

story: let K be a field, with a nontrivial norm |·| : K → R≥0 satisfying

|x| = 0 ⇐⇒ x = 0, |xy| = |x||y|, and |x+ y| ≤ |x| + |y|. As always, the

norm gives a metric on K, and we say that two norms on K are equivalent

if they define the same topology.

Definition 9.1.6

|·| : K → R≥0 is non-archimedean if it satisfies the strong triangle

inequality, |x+ y| ≤ max(|x|, |y|).

In particular, |·|p on Q is non-archimedean, but the regular norm on Q is

archimedean.

Theorem 9.1.7

Every norm on Q is equivalent to the usual norm (often denoted

|·|∞) or one of the p-adic norms.

Proof: Fix some non-archimedean nontrivial norm |·| on Q. Since |1 · 1| =
|1| · |1|, |1| = 1, so |n| = |1 + · · ·+ 1| ≤ 1 by the non-archimedean property.

Since our norm is nontrivial, there exists α ∈ Q× such that |α| 6= 1, so

picking either its numerator or denominator, there exists n ∈ Z such that

|n| < 1. Moreover, looking at the prime factorization of n, we can see that

there exists a prime p such that |p| < 1.

Fix a = {n ∈ Z : |n| < 1} ⊂ Z. By the non-archimedean property, a is

closed under addition, and is closed under multiplication by elements of Z
since |n| ≤ 1 for all n ∈ Z by our arguments above, therefore, a is an ideal

of Z. a is proper, since |1| = 1, and (p) ⊆ a for some p by the arguments

above, so since (p) is maximal, we can conclude that a = (p). Therefore,

the unit ball with respect to our norm |·| is equal to the unit ball with

respect to |·|p.

So for n ∈ Z, n = bpm with p not dividing b. Since b is an integer, |b| ≤ 1

by arguments made above. However, by construction, b 6∈ a, so |b| 6< 1,

from which it follows that |b| = 1. Therefore,

|n|− logp |p|
p = (p−m)− logp |p| = plogp |p|

m

= |p|m = |n|

where the last equality follows from the fact that |b| = 1. Hence, for any n,

|n| = |n|sp where s = − logp |p|, so |·| ∼ |·|p. �
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A notational warning: Kp can mean ei-

ther the localization or the field of frac-

tions of the p-adic completion depend-
ing on context.

Also, this lemma was left as an exercise
for us to prove.

For what follows, a norm without a sub-
script refers to the field norm.

Math 254A: Introduction to Algebraic Number Theory Fall 2020

Lectures 11 and 12: 5-7 October

Professor Martin Olsson Abhishek Shivkumar

Completions

Recall that Qp can be regarded either as the field of fractions of Zp or as

the completion (in the sense of Cauchy sequences) of Q with respect to |·|p.
This situation generalizes more generally for K a number field, p ⊂ OK ,

e.g, lim←−nOK/p
n is a DVR with field of fractions Kp, which is also given by

the completion (again in the sense of Cauchy sequences) of K with respect

to |·|p given by

|x|p =

(
1

|OK/p|

)νp(x)

Lemma 10.1.1

Any extension of |·|p on Q to a number field K is equal to |·|p for

some prime p ⊂ OK over (p).

The idea of the proof is to start with some extension |·| on K, and consider

A = {x ∈ K : |x| ≤ 1}; we want to show that A = OK,p for some p since

|x|p ≤ 1 ⇐⇒ νp(x) ≥ 0. Consider also a = {x ∈ K : |x| < 1}, which we

want to show is the maximal ideal of OK,p. a is an ideal (assuming |·| is

non-archimedean, via the relevant section of the proof of Theorem 9.1.7)

and we can show that a is in fact maximal, and it’s a general fact that all

prime ideals in OK contain (p) for some rational prime p.

Lemma 10.1.2

Let K be a field complete with respect to a norm |·|, and V a finite

dimensional vector space over K. A norm on V extending |·| is a

norm on V which agrees with |·| on scalar multiplication; two norms

|·|1, |·|2, on V extending |·| on K define the same topology on V iff

there exists R 3 c1, c2 > 0 such that c1|v|1 ≤ |v|2 ≤ c2|v|1.

Proof: For the reverse direction, note that the topology on a vector space

is determined by the open neighborhoods around 0, since the translates

of these neighborhoods are all the open neighborhoods in the topology.

Therefore, for the two norms to define the same topology, it suffices to

show that in every ball around 0 of one norm, a ball of the other norm

fits inside it and vice versa, which is precisely what our pair of inequalities
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The strategy we use in this proof

has a clear geometric picture: Cauchy
convergence of (xn) corresponds to a

ball getting smaller, whereas simulta-

neous Cauchy convergence of the co-
efficients corresponds to a cuboid get-

ting smaller. To show, for example,

that the product and ordinary topolo-
gies on R2 are equivalent, it suffices to

find an open ball around every point in

every open box, and vice versa; this is
precisely what we are doing by our iff

statement about Cauchy sequences.

above show.

For the forward direction, choose c > 0 such that Bc,|·|1(0) ⊆ B1,|·|2(0) e.g,

|v|1 ≤ c =⇒ |v|2 ≤ 1. Choose a ∈ K such that 0 < |a| < 1; then for all

v ∈ V nonzero, there exists a unique integer s such that c|a| < |asv|1 ≤ c.

To see this, note that taking the logarithm of these inequalities yields

log c+ log |a| < s log |a|+ log |v|1 ≤ log c

Geometrically, this corresponds to dividing R into half open segments of

length log |a| based at log c, so that the above inequalities just say that there

exists a unique integer s such that s log |a|+ log |v|1 ∈ (log c+ log |a|, log c].

This much is clear visually.

Then, since |asv|1 ≤ c, |asv|2 ≤ 1 so

|v|2 ≤ |a|
−s

< c−1|a|−1|v|1

Therefore, we may set c2 = c−1|a|−1
; since v is arbitrary, we have the

upper bound on |v|2 we desired. Interchanging |·|1 and |·|2 and running this

argument again, we obtain the requisite inequality in the other direction,

from which the result follows. �

Theorem 10.1.3

Fix a norm |·|V on V over K a field equipped with a norm |·|K , and

choose a basis v1, · · · , vd for V . Under the induced identification

V
∼−→ Kd, the topology on V is the product topology.

Proof: Concretely, given a sequence (xn)n∈N in V , write xn = x1
nv1 + · · ·+

xdnvd where the xin ∈ K. Then xn is Cauchy with respect to |·|V iff each xin
is Cauchy with respect to |·|K .

For the reverse direction,

|xn − xm|V ≤
d∑
j=1

∣∣xjn − xjm∣∣K |vj |V
by the triangle inequality, and if each xin is Cauchy (by assumption), each

term on the right hand side can be made arbitrarily small simultaneously,

since there are finitely many terms.

The forward direction follows by induction on d, with the d = 1 case obvi-

ous. Suppose this holds up to d− 1; then, replace (xn) with (xn − xm)n,m

where the latter is a sequence via the “snake” identification of N× N with

N. Therefore, we can assume that (xn) tends to 0. Suppose (xjn) does not

tend to 0 for some j (WLOG j = 1 by permuting the basis). Replacing

(xn) again by a subsequence, we can also assume that
∣∣x1
n

∣∣
K
> ε for some

ε, all n. Consider the sequence
(
xn
x1
n

)
n∈N

which converges to 0 since (xn)
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Implicit in this discussion is the fact

(unknown to me) that a normed field
retains its norm under completion with

respect to a prime (or its correspond-

ing valuation) and subsequent algebraic
closure.

I don’t think it’s clear that such exten-
sions always exist unless we can just ex-

tend the norm to some algebraic closure
and restrict from there as we did above,

but that too is non-obvious. It is clear,
I think, that valuations extend to com-
pletions, simply by taking the limit.

does, and the denominator is bounded below. Writing

xn
x1
n

− v1 =
x2
n

x1
n

v2 + · · ·+ xdn
x1
n

vd

The left hand side converges to −v1 by assumption, and each of the coef-

ficients on the right hand side converge by induction, so v1 is in the span

of v2, · · · , vd, which contradicts the basis property, from which the result

follows. �

Exercise 10.1.4

Show that Qp is totally disconnected, that is, its connected compo-

nents are its points.

Let K be a number field, νp a discrete valuation defined by p ⊂ OK , L/K

a finite extension. Completing with respect to νp we obtain Kp, and fixing

an algebraic closure Kp, we have the following diagram:

L Kp

K Kp

Any embedding σ : L ↪→ Kp gives rise to norm on L; specifically, the norm

ω = ν ◦ σ where ν is the norm on Kp.

Theorem 10.1.5

With, K, L, p etc. as above, two embeddings σ, τ : L ↪→ Kp give

rise to the same absolute value on L iff they are conjugate over Kp.

We will prove this result later on, after we have developed some general

theory.

Fix K a field complete with respect to a norm given by a discrete valuation

ν, |x|ν = aν(x) for some fixed 0 < a < 1. Let A ⊂ K be the corresponding

valuation ring, e.g, A = {x ∈ K : ν(x) ≥ 0} ∪ {0}. Furthermore, let L/K

be a finite separable extension, and B the valuation ring for some extension

of ν to L.

Proposition 10.1.6

B is a DVR defining a norm on L for which L is complete.

We will sketch the proof of this result: for all q ⊂ B prime over p ⊂ A

(with p the unique maximal of A), we have that lim←−nB/q
nB is a DVR in

L. Hence, since B is free over A by Lemma 5.1.6 and the remarks following

its proof, we may write B = Ae1 ⊕ · · · ⊕ Aen. Since different primes all
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This is missing quite a bit, especially

the last sentence.

No proof was offered of this result, but
it is available in Neukirch as Proposi-

tion 3.3, on page 117.

Not entirely sure what we have shown

here; we know that the cardinality of

the residue field takes the place of p in
converting a valuation to a norm (with

our guiding example being the p-adic

valuation and its associated norm), so
the norm we defined above is what we

would expect. Then we see that since
it’s a power of “the” extension norm,

they define the same topology. That’s
my best guess.

Note that Kν/K is almost always tran-

scendental; for example consider C((t))

over C(t), where C((t)) is the comple-
tion of C(t) with respect to the degree

valuation. This is a transcendental ex-

tension.

give the same topology on L, by the approximation lemma, only one prime

q lies above p.

Therefore, pB = qe for some e. Let ω be the valuation on L defined by B

(and q); then ω|K = eν. Setting |y|ω = aω(y)/e gives a norm on L extending

|·|ν on K.

Proposition 10.1.7

Let K be a field, |·|1, |·|2 two norms on it. They define the same

topology on K iff there exists λ > 0 s.t |x|1 = |x|λ2 for all x ∈ K.

From this result, and the above discussion on |·|ω we can conclude that there

exists a unique extension of |·|ν on K to L. In fact, this result passes to

towers of extensions and (for K perfect) implies that there exists a unique

extension of |·|ν to K.

Example 10.1.8

Consider a finite extension L/Qp of degree n with B the ring of

integers of L (Zp the ring of integers of Qp); by the results above,

pB = meB for some e, and one can show that B/mBB ∼= Fpf where

n = ef .

The natural norm on L is given by |y|ω = 1
qω(y) where q = pf , ω as

above an extension of νp. Therefore, |·|
1
n
ω extends |·|p.

Remark 10.1.9

The existence of the unique extension of |·|K to K gives an alternate

way to think about the absolute value on L/K; in particular, given

|·|K , pick any embedding σ : L ↪→ K, and restrict |·|K to σ(L) ∼= L.

This does not depend on σ, since the extension |·|K is unique, and

therefore fixed by Gal(K/K).

Global to Local

Given K a number field, ν a discrete valuation on K, Kν the corresponding

completion (in either sense). Let A ⊂ K be the valuation ring of ν, L/K

a finite extension, B the integral closure of A in L, Â the completion of A

with respect to the unique maximal.

Proposition 10.2.1

B ⊗A Â ∼=
∏

qi|p B̂i where Bi is the completion of B at qi.
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There are about a thousand details to

be checked here, but I think the basic

structure is fine. “Reindexing” has to
be a misnomer here, the point proba-

bly being that looking at every rth ele-
ment in the inverse limit (in the prod-

uct form) is enough data to infer the

entire element. In fact, we show in this
week’s homework that

Zn ∼=
∏
p|n

Zp

so that, in particular, Zpr ∼= Zp. We

didn’t use any special facts about Z
to show this, just the Chinese remain-

der theorem, so some analogous result

holds generally.

This analysis follows from the following

general procedure: suppose L/K is sep-

arable with L = K(θ) for some θ ∈ OL
with minimal polynomial p ∈ OK [x].
Then, fixing p prime in OK and rela-

tively prime to the conductor of OK [θ],
defined as {y ∈ OL : yOL ⊆ OK [θ]}, if

p(x) = p1(x)e1 · · · pr(x)er

where p(x) ≡ p(x) (mod p), then qi =
pOL + pi(θ)OL are the different prime

ideals of OL above p, where the inertia
degree fi of qi is the degree of pi(x)
and p = qe11 · · · q

er
r . This follows from

the fundamental identity.

Note that if OL = OK [θ], the conduc-

tor restriction does not matter; as such,

this is the best case scenario for calcu-
lating the primes above a given prime.

Proof: First, note that B ⊗A Â ∼= lim←−nB/p
nB; since B = Ad for some d

by Lemma 5.1.6 and the subsequent discussion, we have that

B ⊗A Â ∼= Âd = lim←−
n

(A/pn)
d

= lim←−
n

B/pnB

by various basic results about tensors and completions, and categorical

limits commuting. Then, by the Chinese remainder theorem,∏
qi|p

B̂i = lim←−
n

B/qn1 · · · qng ∼= lim←−
n

B/qn1 × · · · ×B/qng

Then, since qrn1 · · · qrng ⊆ pnB ⊆ qn1 · · · qng for some r (say, r = maxi ei) since

pB = qe11 · · · q
eg
g , and pnB ⊆ pB. Then, we have the following diagram:

lim←−nB/p
nB lim←−nB/q

n
1 · · · qng

lim←−nB/q
rn · · · qrng

∼=

where

lim←−
n

B/qrn1 · · · qrng ∼= lim←−
n

B/qn1 · · · qng

since one is a reindexing of the other. Therefore, the isomorphism we have

claimed follows. �

Exercise 10.2.2

Consider Q( 3
√

2)/Q, with OQ( 3√2) = Z[ 3
√

2]. Describe the splitting

of (5) in this extension.

f(x) = x3 − 2 is the minimal polynomial for 2, and factors in F5[x] as

(x− 3)(x2 + 3x− 1), and the quadratic factor is irreducible by exhaustive

search (since a quadratic is irreducible iff it has no roots). This tells us

that (5) splits without ramification into two primes in Z[ 3
√

2].

Consider the following setup, synthesized from our discussions thus far:

L B B ⊗A Â

K A Â Kν

Kν

Note that the primes q ⊂ B over p ⊂ A are in bijection with valuations ω

on L extending ν, leading to the notation ω|ν.
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Needs fixing, don’t understand the

lecture proof. Ditto below, why

is Gal(Kν/Kν) the relevant Galois
group?

Corollary 10.2.3

For all ω|ν, there exists σ : L ↪→ Kν over K such that Lω is isomor-

phic to σ(L)Kν .

Proof: Note that L⊗KKν =
∏
ω|ν Lω embeds into Kν , so we can conclude

that this map in fact factors through one of the Lω (since injections out of

a product of fields are actually maps out of one of the factors, as otherwise

there would be a nontrivial kernel) so that this embedding is in fact an

embedding of Lω into Kν . Then, the composite L ↪→ L⊗KKν ↪→ Kν is an

embedding of L into Kν . Since we may embed Kν into Kν either directly

(by some fixed embedding) or by first embedding it into L⊗KKν , the result

follows by Galois theory. �

We are now ready to prove Theorem 10.1.5.

Proof: It is clear that conjugate embeddings give rise to the same absolute

value. For the other direction, note again that L ↪→
∏
ω|ν Lω ↪→ Kν factors

through some specific Eω0
. Then, with σ and τ defining the same absolute

values, we have the following diagram

E ↪→
∏
ω|ν

→ Eω0
⇒ Kν

where the parallel arrows are σ and τ . By Galois theory, these two embed-

dings then differ by an element of Gal(Kν/Kν). �
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One needs to check that embeddings

E ↪→ Kν have image inside a subfield

of Kν isomorphic to K. In fact, given
a finite separable extension E/K, and

any embedding K ↪→ Ω where Ω is an

algebraically closed field, then the num-
ber of embeddings of E into Ω over

K is equal to [E : K]. To see this,
let E = K(α), f the minimal poly-

nomial of α so that E ∼= K[x]/(f).

Then K-embeddings of E into some al-
gebraically closed Ω are determined by

the image of x, and for this map to be

well-defined, x must be a root of f in
Ω, of which there are exactly [E : K].

Math 254A: Introduction to Algebraic Number Theory Fall 2020

Lecture 13: 12 October

Professor Martin Olsson Abhishek Shivkumar

Completions

Given K a number field, ν a discrete valuation on K, E/K a finite exten-

sion. By previous results, we know that E ⊗K Kν
∼=
∏
ω|ν Eω.

Corollary 11.1.1

If n = [E : K], and nω = [Eω,Kν ], then

n =
∑
ω|ν

nω =
∑
ω|ν

eωfω

Proof: We know that n is equal to the number of embeddings E ↪→ Kν .

In turn, via the factorization of embeddings E ↪→ Kν through
∏
ω|ν Eω,

it is clear that n is equal to the sum of the nω, since we can partition all

embeddings E ↪→ Kν via which Eω they factor through. �

Corollary 11.1.2

If E/K is Galois with Galois group G, then Eω/Kν is Galois with

group Dω ⊂ G.

Theorem 11.1.3: Structure of complete DVRs (equal char.)

Suppose A is a complete discrete valuation ring whose fraction field

and residue field have equal characteristic. Then A = k[[t]] where

k = A/m is the residue field.

The proof is available in Serre II.4., but the idea is to find k inside A.

Once you have a section k → A, fix t ∈ m a generator which gives a map

k[t] → A, which descends to a map k[t]/(tn) → A/mn which is in fact an

isomorphism by induction. We have a diagram

0 k(tn−1)/(tn) k[t]/(tn) k[t]/(tn−1) 0

0 mn−1/mn A/mn A/mn−1 0

∼=

The first vertical map is an isomorphism since both are one dimensional
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Note that the other mixed characteris-

tic is not possible: if the field of frac-
tions has characteristic p, then p = 0 in

A, so p = 0 in k since k is a quotient of

A.

This is an easy application of the corol-
lary to Hensel’s lemma that we prove

below.

k-vector spaces, and it follows by induction and the five lemma that the

map k[t]/(tn)→ A/mn is an isomorphism. Then we have that

k[[t]] = lim←−
n

k[t]/(tn)
∼−→ lim←−

n

A/mn ∼= A

Theorem 11.1.4: Structure of complete DVRs (mixed char.)

Let A be a complete discrete valuation ring, with characteristic 0

fraction field and characteristic p > 0 residue field k, and suppose

that k is perfect. Then there is an endofunctor W (where W (k) is

called the ring of Witt vectors) on the category of rings with the

universal property that W (k) has a unique map to A agreeing the

surjection A� k, where W (k)→ A is a map of complete DVRs of

mixed characteristic with residue field k.

Since k is perfect of positive characteristic, the Frobenius map σk : k
∼−→ k

given by x 7→ xp is an automorphism. Then, by functoriality of W , we have

σ : W (k)→W (k) an automorphism lifting Frobenius.

Example 11.1.5

Let E/Qp be a finite extension; then since Qp is of characteristic 0

(as it contains a copy of Z), it follows by the following diagram that

we are in the setting of mixed characteristic, whence we have W (k)

as below:

E OE k

W (k)

Qp Zp Fp

Exercise 11.1.6

Suppose A is a complete DVR, x ∈ m, u = 1 + x ∈ A×. Then for

all m ∈ Z≥1 coprime with the characteristic of k, u has an mth root

in A.

Theorem 11.1.7: Hensel’s Lemma

Let K be complete with respect to a norm induced by a discrete val-

uation, the corresponding DVR O = {x ∈ K||x| ≤ 1} with maximal

m = {x ∈ K||x| < 1}. Let f ∈ O[x], α0 ∈ O s.t |f(α0)| <
∣∣f ′(α0)2

∣∣.
Then the sequence αi+1 = αi − f(αi)

f ′(αi)
converges to a root α of f in

O and |α− α0| ≤
∣∣∣ f(α0)
f ′(α0)2

∣∣∣ < 1.

Proof: We will sketch this result, the reference is Lang’s Algebraic Number

Theory. Fix c =
∣∣∣ f(α0)
f ′(α0)2

∣∣∣ < 1. Show by induction that the following results
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hold:

1. |αi| ≤ 1, e.g, the αi remain in O

2. |αi − α0| ≤ c

3.
∣∣∣ f(αi)
f ′(αi)2

∣∣∣ ≤ c2i and |f ′(αi)| = |f ′(α0)|

This implies the theorem, as the third condition implies that

|αi+1 − αi| =
∣∣∣∣ f(αi)

f ′(αi)2

∣∣∣∣|f ′(αi)| ≤ c2i |f ′(α0)| → 0

so the limit α exists via completeness of K. Moreover, by the fact that

|f ′(αi)| is a constant sequence, |f ′(α)| = |f ′(α0)| 6= 0, so it follows that

|f(α)| = 0 ⇐⇒ f(α) = 0. �

Corollary 11.1.8

If f(x) ∈ O[x] has a root α ∈ k the residue field ofO, with f ′(α) 6= 0,

then f has a root in K.

Proof: Let α0 ∈ O be any lift of α, so f(α0) ∈ m by assumption,

so |f(α0)| < 1, f ′(α0) a unit since it is nonzero in the residue field, so

|f ′(α0)| = 1. Then, apply Hensel’s lemma, from which the result follows.

�

Note that Taylor’s theorem is true for polynomials in any ring, that is,

f(x) =
∑
k≥0

f (k)(a)

k!
(x− a)k

holds where f(k)(a)
k! is in fact integral and the infinite sum makes sense since

f is a polynomial and its derivatives eventually all vanish.
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I’m not entirely sure what we’ve

shown here. We want to show that

ANL/K(x) = NI
L/K

(Bx) = (Bx ∩
A)fBx for all x ∈ L× (e.g, commuta-

tivity of the above diagram). Perhaps
this follows by the discussion here, but

I don’t see how.

Math 254A: Introduction to Algebraic Number Theory Fall 2020

Lectures 14 and 15: 14-19 October

Professor Martin Olsson Abhishek Shivkumar

Different and Discriminant

Our setup is the usual one: A Dedekind, K its field of fractions, L/K

a degree n separable extension, B the integral closure of A in L. Recall

the trace map trL/K : L × L → K given by (x, y) 7→ tr(xy) (where the

separability condition guarantees that the map trL/K is non-degenerate),

which induces an isomorphism L
∼−→ L∗ = HomK(L,K). Recall that this

induces a map B → B∗ = HomA(B,A), from which we obtain a map

∧nB → ∧nB∗ = (∧nB)F ∗ ⇐⇒ (∧nB)⊗2 ↪→ A

where the map is an embedding since the top exterior power of B is a rank

one A-module, so (∧nB)⊗2 is again rank one, and its image in A is therefore

an ideal.

Then, recalling again that B∗ = {x ∈ L : tr(xy) ∈ A ∀y ∈ B} ⊂ L

is a fractional ideal, we set its inverse DB/A ⊆ B the “different” ideal;

equivalently, B∗ is the “codifferent” ideal.

Let IL and IK represent the groups of fractional ideals in L and K respec-

tively, then the norm map can be realized as N I
L/K : IL → IK given by

β 7→ (β ∩ A)fβ which we call a norm map because the following diagram

commutes:

L× K×

IL IK

NL/K

NIL/K

where the map L× → IL is given by x 7→ xB and similarly for K.

This requires a proof, which we will sketch; first assume that L/K is Galois

with Galois group G, then for β ⊂ B, p = β ∩ A, by Lemma 7.3.2 and

the subsequent discussion, we can write pB = β
ep
1 · · ·β

ep
g . Therefore, since

N I
L/K(β) =

∏
σ∈G σ(β) again by Lemma 7.3.2, it follows that NL/K(β) =

(β1 · · ·βg)epfp since the size of the decomposition group Dβ is epfp.

For the general case (L/K not Galois), take the Galois closure E/L/K,

and noting that N I
E/K = N I

L/K ◦N
I
E/L and NE/K = NL/K ◦NE/L, we have



math 254: algebraic number theory 55

By the arguments made above, we can
omit the superscript I when talking

about norms, since the two notions
are equivalent via taking the fractional

ideal generated by an element. It’s not

clear to me why NE/L specifically is
surjective. Does this have to do with

Galois extensions specifically?

I do not understand this claim at all,
mainly the relevance of the above dia-

gram. The posted lecture notes refer-

ence Serre, page 51.

This is an important result in its own
right, and generally the most effective

way to calculate discriminants in prac-

tice (at least that I have seen thus far).

the following diagram:

E× L× K×

IE IL IK

NE/L NL/K

NIE/L NIL/K

The outer rectangle commutes via the Galois case above, as does the left

square again by the Galois case. The key observation is that NE/L : E× �

L× is surjective, from which it follows that the right triangle commutes via

pulling elements in L× back to E× then mapping them to K× along the

outer rectangle, which we know commutes.

Theorem 12.1.1

NL/K(DB/A) = δB/A where δB/A is the discriminant.

Proof: It suffices to consider the case when A is a DVR; to see this, note

that NL/K(DB/A) and δB/A both live in a Dedekind domain and therefore

factor uniquely into prime ideals of B, so showing this equality is the same

as showing that the two ideals have equal prime decomposition, and one

way to do this is to show that the ramification of each prime is equal in

both ideals. Then, consider the following diagram:

L S−1B B

K S−1A A

One can show that S−1DB/A = DB/AS−1B = DS−1B/S−1A, from which we

restrict to the case where A is a DVR.

Then B is a free A-module, with basis e1, · · · , en, and δB/A = det(tr(eiej))

by construction of the discriminant. Let σ1, · · · , σn : L ↪→ K be the em-

beddings of L into K which fix K; it follows by previous results that

tr(eiej) =

n∑
k=1

σk(eiej)

So, via this identity, the matrix tr(eiej) can be written as the product of

transpose matrices

tr(eiej) = (σj(ei))(σi(ej)) =


σ1(e1) · · · σn(e1)

...
. . .

...

σ1(en) · · · σn(en)



σ1(e1) · · · σ1(en)

...
. . .

...

σn(e1) · · · σn(en)



Therefore, det(tr(eiej)) = det(σi(ej))
2
.



56 abhishek shivkumar

We seem to be implicitly assuming that
fractional ideals over a PID are them-

selves principal, which sounds familiar,

but I can’t find a reference earlier in my
notes.

That A a complete DVR implies that B
is a complete DVR is not a result I can

see easily, nor is it one I can find refer-
ence to earlier in my notes. A proof I
found online uses a version of Hensel’s

lemma.

Now consider a dual basis e∗i for B∗ via the trace pairing; note that B

has finitely many prime ideals since all of its primes are above the unique

prime of A, so by an easy application of the approximation lemma (7.3.1),

we can see that B is a PID. If q is a prime of B, then by the approximation

lemma, there exists b ∈ B such that νq(b) = 1 and νp(b) = 0 for all p 6= q,

so xA = q. Therefore, the codifferent fractional ideal B∗ can be written as

B∗ = Bβ ⊂ L for some β ∈ L.

Therefore

δB∗/A = det
(
σi(e

∗
j )
)2

= NL/K(β)2δB/A

where NL/K(β) = NL/K(B∗) = NL/K(D−1
B/A) by the definition of the dif-

ferent and our observation above. From this, we can see that

NL/K(DB/A)2 = δB/Aδ
−1
B∗/A

and the result will follow if we can show that δB/Aδ
−1
B∗/A = A. This follows

essentially from matrix multiplication, as it is easy to show that the prod-

uct of the matrices whose squared determinants give the discriminants in

question is the identity matrix. �

Exercise 12.1.2

Let ζ a pth root of unity for p a prime. Calculate the discriminant

of Z[ζ]/Z.

Recall from homework that the discriminant can be realized (up to sign) as

the field norm of f ′(ζ) where f is the minimal polynomial for ζ, so, since

f = xp−1
x−1 = 1 + x + · · · + xp−1, f ′(ζ) = pζp−1

ζ−1 , so we want to calculate

NQ(α)/Q

(
pζp−1

ζ−1

)
.

Clearly, since the norm is multiplicative, the norm of the numerator is pp−1

since the norm of ζk is 1, as the corresponding matrix is a permutation ma-

trix for the power basis, and there are p − 1 rows since
[
Q
(
e2πi/p

)
: Q
]

=

p − 1 (more generally
[
Q
(
e2πi/m

)
: Q
]

= ϕ(m)) since the “last” basis ele-

ment we might expect to need is given by the equation

ζp−1 = −(1 + ζ + · · ·+ ζp−2)

e.g in terms of the previous basis elements. It remains to form the norm of

the denominator, ζ − 1. Since

N(ζ − 1) =
∏
k

(ζk − 1) =
∏
k

(1− ζk) = p

in the Galois group formulation of the norm, where the second equality

follows from the fact that p−1 is even for odd primes, and the final equality

from the factorization of 1 + x+ · · ·+ xp−1 evaluated at x = 1. Therefore,

the discriminant (up to sign, since that is implicit in the way in which we

are calculating the discriminant) is pp−2.
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As an example, consider k[x]/(x2)/k

whose discriminant is the determinant

of the matrix(
tr(1) tr(x)

tr(x) tr
(
x2
)) =

(
2 0

0 0

)
via the obvious basis for k[x]/(x2) over
k. Therefore, δ(k[x]/(x2))/k = 0.

This assertion is also nonobvious to me,

especially that the residue fields form-
ing a separable extension implies that

the discriminant is A, or that this im-

plies what we claimed above.

No part of this last part makes any

sense to me.

Theorem 12.1.3

Let β be a prime over p in our standard AKLB setup (with L/K

finite and separable). Then β is unramified iff β 6 | DB/A.

Proof: First, we will handle a special case, when A is a complete DVR

with unique prime p. Note that this implies that B is a complete DVR

with unique prime β s.t βe = pB for some e.

Note that B is a free A-module by Lemma 5.1.6 and the subsequent ex-

ample, so we may choose a basis over A e1, · · · , en, and consider δB/A =

det(tr(eiej)). Note that

δB/A ≡ δ(B/pB)/(A/p) (mod p)

since

δB/A =

A B/pBa separable field extension over A/p

pr else

In either case, DB/A = βh for h ≥ 0 with h = 0 in the first case and h > 0

in the second case above, via the identity NL/K(DB/A) = δB/A. In the

h = 0 case, pB = β so we have a separable field extension, and the h > 0

case is similar.

For the general case, note the following property of the different: given field

extensions K ↪→ L ↪→ M with rings of integers A, B, and C respectively,

then DC/A = DC/BDB/A (we will not show this; a reference is Serre, page

51). Moreover, we have as in the proof of Theorem 12.1.1, that S−1DB/A =

DS−1B/S−1A e.g, the different is compatible with localization. Finally, the

different is compatible with completion: given p ⊂ A, β ⊂ B over p, B̂β

over Âp the completions, then D̂B/A = DB/A · B̂β = DB̂β/Âp
. The idea

of the proof for this property is that, using the localization compatibility

again, we may assume that A is local with maximal ideal p.

We have the following diagram:

L⊗K K̂ B ⊗A Âp

K̂ Âp

Then, one can show that there is a trace map trL⊗KK̂/K̂ : L ⊗K K̂ → K̂

which induces pairings as before. Then, again using a basis, one may show

that B∗⊗AÂp = (B⊗AÂp)∗ where this duality is in reference to trL⊗KK̂/K̂ .

Essentially, this result shows that the formation of the codifferent commutes

with completion.
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Lots to check here, I can barely follow
the logic.

Ramified primes divide DB/A and only

finitely many primes divide a given
fractional ideal.

We’ve previously stated that

OQ( 3√2)
= Z[ 3

√
2], which has in-

tegral basis 1, 3
√

2, 3
√

4. Then,

δZ[ 3√2]/Z = −2233 by a straightforward

calculation, from which it follows

that only (2) and (3) ramify in this
extension.

Equivalently, without knowing the ring

of integers for this extension, one can
see that 2 is ramified immediately, and

that 3 is ramified since if it is unrami-
fied, it is unramified in the Galois clo-

sure, which adjoins roots of unity e.g
1+
√
−3

2
from which it follows that 3

ramifies in the Galois closure. Unsure
how this rules out other primes.

x3 − 2 (mod 9) has no solutions, and

note that this does not contradict
Hensel’s lemma since the derivative

vanishes.

Recall also that B⊗A Âp =
∏
β|p B̂β by Proposition 10.2.1, so D−1

B/A ·(B⊗A
Âp) =

∏
β|pD

−1

B̂β/Âp
.

Then, applying these facts reduces the general case to the special case;

write DB/A =
∏

primes β β
hβ . We claim that hβ > 0 iff β is ramified. Pass

to the completions, B̂β/Âp and hβ > 0 iff DB̂β/Âp
6= B̂β so it is enough to

consider the complete local case. �

Corollary 12.1.4

There are only finitely many ramified primes in B.

Corollary 12.1.5

p ⊂ A does not divide δB/A iff p is unramified in B; we say p is

unramified if all the primes above p are unramified.

Exercise 12.1.6

What primes ramify in the extension Q( 3
√

2)/Q?

Theorem 12.1.7

Fix q ⊂ B over p ⊂ A in our usual AKLB setup, with L/K finite

and separable and A/p perfect, and e the ramification of q over p.

Then, there are three cases:

1. qe−1|DB/A and the multiplicity of q in DB/A is exactly e − 1 if

the characteristic of A/p does not divide e. This is the so-called

tamely ramified case.

2. If the characteristic of A/p does divide e, then qe|DB/A. This is

the wildly ramified case.

3. If q is unramified, then q 6 | DB/A.

We will prove this result in the next lecture, a reference is Serre Proposition

13 on page 58.

Example 12.1.8

Consider Q( 3
√

2)/Q. Notice that completing with respect to (3)

gives Q3( 3
√

2)/Q3 which is a degree three extension with f = 1; to

see that f = 1, note that x3−2 (mod 3) ≡ x3+1 (mod 3) = (x+1)3

(mod 3) which implies that the residue field extension is trivial.

To see that the degree of the extension is three, note that cubic

polynomials are either irreducible or have a root, which implies that

x3 − 2 is irreducible in Q3( 3
√

2) by Hensel’s lemma, from which the

result follows.
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I missed the last bit of this example,

which explains how to use this to cal-
culate the discriminant of OQ( 3√2)

.

Therefore, 3OQ( 3√2) = q3 so q3 divides the different (since we are in

the wildly ramified case).
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I don’t really know what role the Witt
vectors play here, I’ll try to update

once slides are posted. I don’t know

which of the identities for the different
we have actually shown and which we
are just invoking.

Math 254A: Introduction to Algebraic Number Theory Fall 2020

Lectures 16 and 17: 21-26 October

Professor Martin Olsson Abhishek Shivkumar

Finishing Theorem 12.1.7

Consider our standard AKLB setup with L/K finite and separable, A/p

perfect for some prime p ⊂ A, e.g, the setting where Theorem 12.1.7 applies.

Note that Theorem 12.1.3 suffices to show the third part of Theorem 12.1.7.

For the first two parts, we will provide a sketch: the main idea is reduction

to the case where A is a complete DVR. Consider B̂q over Âp, and note

that qB̂q is the unique maximal of B̂q lying over pÂp the unique maximal

of Âp, with ramification e. Then, as we have stated previously, DB/A ·B̂q =

DB̂q/Âp
.

Note that the ramification index e doesn’t change upon completion because

pB = qe(other primes) and so (pÂp)B̂q = (qe(other primes))B̂q and the

other primes become the unit ideal upon completion, so in fact (pÂp)B̂q =

qeB̂q.

After reducing to the complete DVR case, we want to reduce to the totally

ramified case. To that end, consider the following diagram:

L B

Kun Aun

K A

where A ↪→ Aun is unramified, and Aun ↪→ B is totally ramified, Kun the

field of fractions of Aun. Then, we have A ↪→ W (B/q) ↪→ B where W

represents the Witt vector functor.

So Kun is the field of fractions of W (B/q) · K ⊆ L with ring of integers

W (B/q)⊗W (A/p) A. Then, from the fact that DL/K = DL/Kun · DKun/K =

DL/Kun , we can conclude that it suffices to prove the theorem in the case

where A is a complete DVR and L/K is totally ramified.

In this case, B = A[α] where α satisfies an Eisenstein polynomial.
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Don’t follow the invocation of
Nakayama’s lemma here or why the

two things we claim are equivalent

above are equivalent, will try to update
when I can take a look at the lecture

slides.

I didn’t follow large sections of this, I’ll

try to post a more detailed proof when
the lecture slides are up. Another re-
source is Serre, page 20.

There’s some discussion at the begin-
ning of Lecture 17 about the term pa-

per that I didn’t transcribe. General
idea: term paper should have a clear

goal from the outset, then build to-

wards that as opposed to a sequence
of lemmas and propositions.

Proposition 13.1.1

Let A be a complete DVR with maximal p, B/A as above with only

one prime q ⊂ B over p, and with B/q separable over A/p. Then

there exists α ∈ B such that B = A[α] and α satisfies an Eisenstein

polynomial.

Proof: Choose β ∈ B such that β ∈ B/q generates B/q over A/p (since

L/K is totally ramified). Let f ∈ A[x] be a monic polynomial reducing to

the irreducible polynomial of β over A/p, and let γ ∈ q be a uniformizer.

Then f(β+γ) ≡ f(β) + f ′(β)γ (mod q2), and f ′(β) 6≡ 0 (mod q) since the

residue extension is separable by assumption. Therefore, f ′(β)γ is not in

q2 so for α = β or β + γ, there exists an element in A[α] ⊆ B of order 1

at q. We claim, then, that B = A[α]. By Nakayama’s lemma, it suffices

to show that pB + A[α] = B, or, equivalently, that A[α]/pA[α] → B/qe is

surjective. To see this, consider the following diagram:

A[α]

0 qe−1/qe B/qe B/qe−1 · · · B/q

We know that A[α] → B/q is surjective, so we want to show that all

downward arrows are surjective. Suppose we have shown that A[α] →
B/qe−1 is surjective, with kernel τ ⊂ A[α]. Then, note that qe−1/qe is a

one dimensional space over B/q with basis [ωe−1] for any uniformizer ω ∈ q,

so if we can show that τ → qe−1/qe is surjective, then the result follows by

a diagram chase.

To show that we can choose f to be Eisenstein, fix an algebraic closure

and write f(x) =
∏

(x − σ(α)). Now notice that norm of σ(α) is the

same for all σ by unique extension of norm |·|p to the algebraic closure,

so via Viète;s relations, the coefficients are in p via the non-archimedean

property of the norm. To show that a0 6∈ p2, note that L/K is separable

and totally ramified so |a0| = |α|e which implies a0 6∈ p2 due to the chosen

normalization: a0 ∈ qe which implies that νq(a0) = e so the valuation of a0

is 1 with respect to p. �

Finally, with the above result, we claim that DB/A = (f ′(α)). To see this,

let f be the required polynomial from the above argument, and write

f(x) = xe + ae−1x
e−1 + · · ·+ a0

with

f ′(α) = eαe−1 + (e− 1)ae−1α
e−2 + · · ·+ a1
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Recall that α has order one in q by the above proof, so if the characteristic

of A/p does not divide e, then all the coefficients of f ′(x) are in pB = qe

except for e, and eαe−1 ∈ qe−1 so f ′(α) is the sum of a nonzero element (e.g,

a generator) of qe−1 and elements in qe. This implies that (f ′(α)) = qe−1.

If the characteristic of A/p does divide e, then f ′(α) is the nonzero sum of

elements in qe, so (f ′(α)) ⊆ qe (since the lead term vanishes).

It remains to show that the different is in fact equal to (f ′(α)); in fact we

can show something stronger:

Lemma 13.1.2

Let E = K(α), f a separable irreducible minimal polynomial of α

over K, and

f(x)

x− α
= b0 + b1x+ · · ·+ bn−1x

n−1

Then the dual basis of 1, α, · · · , αn−1 is b0
f ′(α) , · · · ,

bn−1

f ′(α) , i.e,

tr

(
αi

bj
f ′(α)

)
= δij

Proof: Let α1, · · · , αn be the distinct roots of f in some algebraic closure

of K(α), then
n∑
i=1

f(x)

x− αi
αri

f ′(αi)
= xr

for all 0 ≤ r ≤ n− 1. To see this, subtract the left hand side from the right

hand side to obtain a polynomial of degree n− 1 (for any choice of r) with

roots α1, · · · , αn. Plug in α1 = α:[
f(x)

x− α1

]
(α1)

αr1
f ′(α1)

= αr1

from which it follows that
[
f(x)
x−α1

]
(α1) 1

f ′(α1) = 1. This implies that

tr

(
f(x)

x− α
αr

f ′(α)

)
= xr

where the trace is taken coefficient-wise on the polynomial, so noting that

f(x)

x− α
= b0 + b1x+ · · ·+ bn−1x

n−1

we have that

tr

(
bi

αr

f ′(α)

)
= δir

as claimed. �

Finally, we may conclude that B∗ = 1
f ′(α)B; the above lemma shows that

B∗ is the B-submodule of L generated by
bj

f ′(α) , so if we may write the bi
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in terms of 1, α, · · · , αn−1, the result would follow. This is an elementary

observation, again from

f(x)

x− α
= b0 + b1x+ · · ·+ bn−1x

n−1

Since f is monic, bn−1 = 1. For the other coefficients, note that bn−2 −
αbn−1 = an−1, bn−3−αbn−2 = an−2 and so on, which follows by multiplying

the above identity by x − α and identifying coefficients, and the result

follows.

Cyclotomic Fields

Let n be an integer, ζn a primitive nth root of unity (e.g, ζnn = 1, ζmn 6= 1

for m < n). A good standard choice is ζn = e2πi/n. Consider Kn = Q(ζn)

over Q, with n = pr, p prime, r ≥ 1 which is equipped with a natural action

by (Z/(pr))×, where i acts by sending ζn to ζin.

Lemma 13.2.1

For all i ∈ (Z/(pr))×,
1−ζipr
1−ζpr ∈ O

×
Kn

.

Proof:
1− ζipr
1− ζpr

= 1 + ζpr + · · ·+ ζi−1
pr ∈ OKn

Note that ζipr is also a primitive pr-th root of unity since i ∈ (Z/(pr))×,

so there exists j minimal such that
(
ζipr
)j

= ζpr . By repeating the above

argument, we have that

1−
(
ζipr
)j

1− ζipr
=

1− ζpr
1− ζipr

∈ OKn

e.g,
1−ζipr
1−ζpr is invertible in OKn as claimed. �

Note the expansion

xp
r − 1

xpr−1 − 1
= 1 + xp

r−1

+ x2pr−1

+ · · ·+ x(p−1)pr−1

=
∏

i∈(Z/(pr))×

(x− ζipr )

where the latter equality is via the fact (which we have used above) that

(Z/(pr))× indexes primitive roots of unity.

Setting x = 1, we have that pOKn =
∏
i∈(Z/(pr))×(1 − ζipr ) which we can

write as a unit times (1 − ζpr )ϕ(pr) where ϕ(pr) is defined to be the size

of (Z/(pr))× the group of units of Z/(pr) (more generally, this is how we

define ϕ(n), Euler’s totient function).
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It follows that [Kn : Q] = ϕ(pr) since (p) is totally ramified in Kn, and

e(p) = ϕ(pr). Moreover, one can show (though we will not) that the discrim-

inant of Z[ζpr ] is pp
r−1(pr−r−1), and that all other primes are unramified.



math 254: algebraic number theory 65

There’s some discussion in here about

showing this result via showing that
two codifferent ideals are equal, which

I have excised to a margin note since

it seems sort of unrelated to the way
we end up proving the result (localiza-

tions).

It suffices to show that DZ[ζn]/Z =

DOKn/Z, since if we have Z[ζn] ⊆
OKn ⊆ O∗Kn ⊆ Z[ζn]∗ via the trace

pairing, the inclusion Z[ζn] ⊆ Z[ζn]∗

gives us the codifferent D−1
Z[ζn]/Z

and

the inclusion OKn ⊆ O∗Kn gives us the

codifferent D−1
OKn/Z

so these two are

equal iff Z[ζn] ⊆ OKn is an equality.

Not sure why we can take α to be ζn;

something about the proof of Propo-
sition 13.1.1? Order 1 at the maxi-
mal etc. Really did not understand the
l = p localization comment.

A fact which was mentioned (from

Lang’s Algebraic Number Theory) but
which didn’t really fit in with the flow
of the proof above: DB/A is the great-

est common divisor of ideals (f ′(α)) for
α ∈ B, f the irreducible polynomial of
α.

Math 254A: Introduction to Algebraic Number Theory Fall 2020

Lecture 17: 28 October

Professor Martin Olsson Abhishek Shivkumar

Cyclotomic Fields

Recall our setup with Kn = Q(ζn), ζn a primitive nth root of unity,

equipped with an action (Z/(n))
× y Q(ζn) where i acts by ζn 7→ ζin.

Proposition 14.1.1

Let n = pr for some r ≥ 1. Then OKn = Z[ζn].

Proof: As always, we know that Z[ζn] ⊆ OKn , we just need to show

equality.

It suffices to show that, for all primes l, the inclusion Z[ζn] ↪→ OKn becomes

an isomorphism upon localization by l: Z[ζn]l
∼−→ OKn,l (it is a well known

result in commutative algebra that checking if a map if an isomorphism

is the same as checking if all of its localizations are isomorphisms). To

check this, we complete with respect to l, since this allows us to apply

Proposition 13.1.1:

Ql(ζn) Zl[ζn]

Ql Zl

We know from Proposition 13.1.1 that OQl(ζn) = Zl[α], and we may take α

to be ζn.

The only nontrivial case is when we localize and complete at l = p; in this

case, one can check that 1− ζn has order 1, which suffices. �

This discussion is useful in determining the corresponding facts for general

cyclotomic fields.

Theorem 14.1.2

Let n = pr11 · · · prss . Then [Kn : Q] = ϕ(n) := | (Z/(n))
× |, the only

primes ramified in Kn are the pi, and epi = (pi − 1)pri−1
i . Kn is

Galois over Q with Galois group (Z/(n))
×

.
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I didn’t really understand the end of
this proof, I’ll fix this part when notes

are uploaded.

This wasn’t in lecture, I added it in.

Proof: The key idea of the proof is the following diagram:

Kn

Q(ζpr11 ) · · · Q(ζprss )

Q

Each Q(ζprii
) is contained in Kn = Q(ζn) since

ζn = e
2πi

p
r1
1 ···p

rs
s =⇒ ζ

p
r1
1 ···p

ri−1
i−1 p

ri+1
i+1 ···p

rs
s

n = ζprii

Then, we may proceed via induction on s, where the s = 1 case is the

prime power case we have discussed above. For the inductive step, consider

n′ = pr11 · · · p
rs−1

s−1 , with the following diagram:

Kn

Kn′ Q(ζprss )

Q

ϕ(prss )

(Z/(n′))×

The result follows by inspection of this diagram and from the fact that the

two extensions in this diagram are disjoint. �

Quadratic Reciprocity

For what follows, let p be an odd prime.

Definition 14.2.1: Legendre Symbol

Given p an odd prime, a ∈ F×p , we define the Legendre symbol as

follows: (
a

p

)
=

1 x2 ≡ a (mod p) for some x ∈ Fp
−1 else

In fact,
(−
p

)
defines a homomorphism from Fp to Z/(2) presented as {1,−1},

e.g, the Legendre symbol is multiplicative. This follows from the following

more general result:
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Proposition 14.2.2: Euler’s Criterion

Let p be an odd prime, a ∈ F×p . Then(
a

p

)
≡ a

p−1
2 (mod p)

Proof: This result follows by analysis of the polynomial xp−1 − 1 ∈ Fp[x].

Since p− 1 is even, we can write

xp−1 − 1 =
(
x
p−1
2 − 1

)(
x
p−1
2 + 1

)
Note that Fermat’s Little Theorem implies that every element of F×p is a

root of this polynomial, so each element of F×p is in fact a root of exactly

one of the factors (since a degree p−1 polynomial has at most p−1 roots).

Clearly, a ∈ F×p is a square iff there exists x s.t

x2 ≡ a (mod p) ⇐⇒ x2 p−1
2 = xp−1 = 1 ≡ a

p−1
2 (mod p)

E.g, a is a square iff a
p−1
2 − 1 ≡ 0 (mod p). Therefore, if a is not a square,

then a is a root of the right factor of our polynomial, e.g, a
p−1
2 ≡ −1

(mod p), from which the result follows. �

Note that this result also shows that exactly half of F×p are squares and half

are non-squares, since each factor must have p−1
2 distinct roots.

Proposition 14.2.3

Let

S =
∑

ν∈(Z/(p))×

(
ν

p

)
ζν ∈ Z[ζp] ⊂ Q(ζ)

for an odd prime p. Then S2 =
(−1
p

)
p.

Proof: By observation, we can write

S2 =
∑
ν,µ

(
νµ

p

)
ζν+µ

Then, reindexing ν as νµ since both are units and this just permutes the

sum, we have that

S2 =
∑
ν,µ

(
νµ2

p

)
ζµ(ν+1) =

∑
ν,µ

(
ν

p

)
ζµ(ν+1)

where the second equality is from the fact that νµ2 is a square iff ν is. We

may split the above sum into two sums:

S2 =
∑
ν 6=−1

(
ν

p

)∑
µ

ζµ(ν+1) +
∑
µ

(
−1

p

)
The latter sum is equal to (p− 1)

(−1
p

)
; moreover,

∑
ν

(
ν
p

)
= 0 from the fact

shown above that precisely half of F×p are nonsquares, and half are squares,
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so
∑
ν 6=−1

(
ν
p

)
= −

(−1
p

)
. Finally,∑

µ

ζµ(ν+1) =
∑
µ

ξµ = ξ + ξ2 + · · ·+ ξp−1 = −1

where ξ = ζν+1, so we may conclude that

S2 = −
(
−1

p

)
(−1) + (p− 1)

(
−1

p

)
= p

(
−1

p

)
as claimed. �

Lemma 14.2.4

Every quadratic extension of Q is contained in a cyclotomic field.

Proof: Consider Q(
√
d) with d ∈ Z square-free. We want to show that√

d ∈ Q(ζn) for some n, from which the result would follow. It suffices

to show this for d = p prime, since the composite extension of cyclotomic

extensions is itself cyclotomic by taking the least common multiple of the

indices involved. For p odd, if p ≡ 1 (mod 4), then

√
p =

p−1∑
k=0

ζk
2

p

and similarly if p ≡ 3 (mod 4), then

i
√
p =

p−1∑
k=0

ζk
2

p

It follows that Q(
√
p) ⊆ Q(ζn) for n = p and n = 4p respectively. To see

that the quadratic Gauss sums above sum to
√
p and i

√
p, note that

p−1∑
k=0

ζk
2

p =

p−1∑
k=0

(
1 +

(
k

p

))
ζkp

since in the former sum, squares in F×p are counted twice in k2, so we may

instead sum over all of Fp and allow
(

1 +
(
k
p

))
to set non-square terms to

zero, and scale square terms by 2. By inspection, the latter sum is the

sum S of Proposition 14.2.3, and therefore squares to
(−1
p

)
p. By Euler’s

criterion,
(−1
p

)
= (−1)

p−1
2 , from which our mod 4 analysis and conclusions

follow.

Finally, for p = 2, it is clear that
√

2 ∈ Q(ζ8) since (1 + i)2 = 2i ⇐⇒
1+i√
i

=
√

2. �
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I asked about optional lectures during

dead week, Professor Olsson says he’s
open to the idea if people have topics

they want to hear about.

There were some remarks in here that I

didn’t quite understand about the dis-

criminant of Q(
√
p) and the values of

fq for some extension being related to

the Legendre symbol.

Someone asks: this proof is all well and

good but why would anyone write down

the sum S in the first place? Professor
Olsson says: I think of S as a kind of
Fourier transform. Unclear what this

means.

Math 254A: Introduction to Algebraic Number Theory Fall 2020

Lectures 18-20: 2-9 November

Professor Martin Olsson Abhishek Shivkumar

Quadratic Reciprocity

Theorem 15.1.1: Quadratic Reciprocity

Let p, q be odd primes. Then(
p

q

)(
q

p

)
= (−1)

p−1
2

q−1
2

Before we prove this theorem, a few remarks; first, note that we can extend

the Legendre symbol
(−
p

)
from F×p to Z by setting

(
n
p

)
= 0 when p|n. This

implies, then, that x2−n has 1+
(
n
p

)
roots modulo p by inspection. Proof:

The proof is a direct application of Proposition 14.2.3; we may write

Sq = S(S2)
q−1
2 = S

(
−1

p

) q−1
2

p
q−1
2 ≡ S(−1)

p−1
2

q−1
2

(
p

q

)
(mod q)

where the final equality is via two applications of Euler’s criterion (Propo-

sition 14.2.2). On the other hand, since raising a sum to the qth power mod

q is the same as raising each summand to the qth power,

Sq =

p−1∑
ν=1

(
ν

p

)q
ζνq ≡

(
q

p

) p−1∑
n=1

(
νq

p

)
ζνq ≡ S

(
q

p

)
(mod q)

where
(
ν
p

)q
=
(
ν
p

)
since raising ±1 to an odd power does not alter it, and

where the final equality is just the fact that νp is a reindexing of ν since p

is a unit mod q. Finally, multiplying by S, we have

Sq+1 ≡ S2(−1)
p−1
2

q−1
2

(
p

q

)
≡ S2

(
q

p

)
The claim follows by dividing by S2, which we can do since S2 =

(−1
p

)
p is

nonzero. �

Minkowski’s Bound

Let K/Q be a number field, Cl(K) its class group, and recall that any

element of Cl(K) can be represented by an ideal of OK (by clearing de-

nominators).
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We’ve discussed the norm of an ideal
before, but I’m adding a definition here

because previously it was just sort of

thrown in in the fog of war.

The nomenclature NB/A is weird to
me, it seems like it should also beNL/K
here. Also I’m not sure if this descends
to a morphism of class groups, but I’m
pretty sure this was mentioned. In the
case we care about, K = Q and L is

a number field, since the fractional ide-
als of Z are all principal (e.g Cl(Z) is

trivial) via finding a common denom-
inator of generators, we may take the
codomain of NOL/Z to be the positive
rational numbers.

Proposition 15.2.1

Let n = [K : Q], then n = r1 + 2r2 where r1 is the number of

embeddings K ↪→ R and r2 is the number of embeddings (up to

complex conjuation) of embeddings K ↪→ C whose image is not

contained in R.

Proof: We know that K/Q is separable so n is equal to the number of

embeddings K ↪→ Q, which we think of as sitting inside of C. Then, a given

embedding either lies inside Q∩R, or does not. If we have r1 embeddings of

the former type, then each embedding of the latter type up to conjugation

is in fact 2 distinct embeddings when we remove the “up to conjugation”

requirement, from which the result n = r1 + 2r2 follows. �

Definition 15.2.2: Norm of an ideal

In our standard AKLB setup, we have a map NB/A from the set of

fractional ideals of L to the fractional ideals of K given by

NB/A(b) = ({NL/K(x) : x ∈ b})

e.g, the ideal generated by the norms of the elements of b.

NB/A is the unique homomorphism satisfying NB/A(q) = pfp for

p = q ∩ A the prime ideal of A below q. Additionally, the two

notions of a norm are well-behaved with respect to each other in the

sense that the following diagram commutes:

L× K×

IB IA

NL/K

y 7→(y) x 7→(x)

NB/A

where I denotes the set of fractional ideals.

It is important to note that in the special case of AKLB where K = Q,

A = Z, the norm NOL/Z of an integral ideal I ⊆ OL is simply the size of

the quotient ring OL/I. We will not show this.

Theorem 15.2.3: Minkowski’s Bound

Let MK =
√
|DK |

(
4
π

)r2 n!
nn where DK is the discriminant. Then

every element of Cl(K) can be represented by an ideal I ⊂ OK with

NOK/Z(I) = |OK/I| ≤MK .

Note that the norm of an integral (meaning non-fractional) ideal must be

integral via a result stating that the norm restricts to the ring of integers.

Moreover, note that if MK < 2 for K/Q a number field, then each frac-
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It is clear that r1 = 2, so r2 = 0, and by
previous calculations |DK | = 40, so the

Minkowski bound gives MK =
√

40 2
4

=√
10 < 4, so to determine Cl(K), we

need only look at the primes above 2
and 3. Some analysis in this direction

shows that Cl(K) = Z/(2).

Don’t really understand why my latter

claim here is obvious.

tional ideal is represented by some integral ideal a with NOK/Q(a) < 2, so

NOK/Q(a) = 1 and OK/a is trivial, so a = OK and Cl(K) is trivial.

Example 15.2.4

Let K = Q(i), OK = Z[i], n = 2, |DK | = 4, r2 = 1. Then MK =
4
π < 2, so we can conclude that every fractional ideal is equivalent

to an ideal of norm 1, which implies that Cl(Q(i)) is trivial.

More generally, to calculate Cl(K) for K/Q a number field, we need only to

consider the primes p with p ≤MK ; this follows from the fact that fractional

ideals factor into prime ideals in Dedekind domains (such as OK), so Cl(K)

is generated by the primes. Moreover, since the norm of a prime ideal is the

size of the residue field (where the quotient ring is a field since Dedekind

domains are one-dimensional), the norms of prime ideals are prime powers

pn. Therefore, every prime of OK is above exactly one prime p ∈ Z, so we

can find all the primes of Cl(K) by looking at the primes p ≤MK and the

primes above them.

Exercise 15.2.5

Let K = Q(
√

10); calculate Cl(K).

Though there are other ways to prove the following result, it is certainly

implied by Minkowski’s bound:

Corollary 15.2.6

Cl(K) is finite.

The key point is that each prime has finitely many primes above it, and

primes in OK are finite order as fractional ideals.

To prove Minkowski’s bound, we need another result of Minkowski’s on

lattices, which we will develop after a few definitions.

Definition 15.2.7: Lattices

A lattice in V = Rn is an abelian subgroup A ⊂ V with A ∼= Zn

and A⊗Z R ∼−→ V , e.g, a Z-basis for A is an R-basis for V .

The quotient V/L of V by a lattice L is a compact manifold; one can see

this most easily in the two-dimensional case by drawing the lattice, picking

a fundamental domain, and identifying edges which gives the fundamental

polygon for the torus. We want to compute the volume of V/L which can

be defined abstractly as

vol(V/L) =

∫
V/L

dx1 ∧ · · · ∧ dxn
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Professor Olsson called this Blichfield’s

lemma but that seems to refer to a
very slightly different lemma or for-

mulation of the lemma; in particular,

Blichfield’s lemma says that vol(S) >
det(L) implies that there exist distinct

z1, z2 ∈ S s.t z1 − z2 ∈ L. This implies

Minkowski’s Theorem.

Also, I think convex should imply mea-

surable, so that hypothesis might be
unnecessary.

There’s a cool geometric argument to

the first part that is basically the same

proof as given, but more motivated.
First, take L to Zn by a linear transfor-

mation, which preserves convexity and
symmetry of S (and affects the volume

of S and V/L by the same factor, taking

vol(V/L) to 1), and consider the lattice
consisting of “cubes” centered at points

all of whose coordinates are even; this

partitions Rn into cubes of edge length
2. Clearly, vol(S) is equal to the sum of

the volumes of intersections of S with
each such cube, and there is a unique
translate taking each such intersection
to the central cube centered at the ori-

gin. The volume of each cube is 2n, so
if vol(S) > 2n, these translates cannot

all be disjoint in the central cube, so
two points x, y ∈ S coincide in the cen-

tral cube. Thus, x − y is in the lattice
of edge length 2, and as above, we can
use the given adjectives to show that
x−y
2

is in S and intersects with Zn.

One can also run through this argu-

ment without first moving to the stan-
dard lattice, but I’ve already typed it
up like this.

but more concretely can be concreted via a determinant. Let b1, · · · , bn ∈
Rn be the standard basis, then L is given by some matrix A in the standard

basis, and vol(V/L) = |detA|.

Definition 15.2.8: Convex Subsets

A subset S ⊆ V = Rn is convex if for all x, y ∈ S, the line tx+(1−t)y
for t ∈ [0, 1] is contained in S.

Theorem 15.2.9: Minkowski’s Theorem

Let L ⊆ V = Rn be a lattice, and let S ⊆ V be a bounded closed

convex measurable subset of V that is symmetric about the origin

(e.g, x ∈ S =⇒ −x ∈ S). If vol(S) ≥ 2n vol(V/L) then S contains

a nonzero element of L.

Proof: Suppose first that vol(S) > 2n vol(V/L), then the quotient map
1
2S → V/L is not injective, where 1

2S ⊆ S since S is convex and symmetric.

This map cannot be injective, since if it were, then the volume of 1
2S which

is 1
2n vol(S) would be less than or equal to vol(V/L) which contradicts

the assumption. This implies that there exists P1 6= P2 ∈ 1
2S such that

P1−P2 ∈ L, and −P2 ∈ 1
2S by symmetry, so by convexity, 1

2 (P1−P2) ∈ 1
2S,

so P1 − P2 ∈ S ∩ L, e.g, S ∩ L contains a nonzero element.

The second case is when vol(S) = 2n vol(V/L). Then for all ε > 0, there

exists a nonzeroQε ∈ L∩(1+ε)S by the first part. If ε < 1, thenQε ∈ L∩2S,

and L ∩ 2S is finite since L is discrete and 2S is bounded; therefore, there

exists Q 6= 0 such that Q = Qε ∈ L ∩ (1 + ε)S for all ε > 0, therefore

Q ∈ L ∩ S. Equivalently, if we suppose L ∩ S has no nonzero points, for

some ε, |L ∩ (1 + ε)S \ {0}| = 1 so Qε = Q as above. �

We are now ready to prove Minkowski’s bound:

Proof: Let σ1, · · · , σr1 be the real embeddings of K, and η1, · · · , ηr2 the

complex embeddings (e.g picking one of each conjugate pair). Then we

have an embedding σ : K ↪→ Rn given by

x 7→ (σ1(x), · · · , σr1(x),Re(η1(x)), · · · ,Re(ηr2(x)), Im(η1(x)), · · · , Im(ηr2(x)))

Note that V = Rn here is also given by V = K ⊗Q R by a result from

commutative algebra (since we may pick a basis for K and write K = Qn).

Then, for any I ⊂ K a fractional ideal, σ(I) ⊂ V is a lattice, which we

will discuss further and justify later on. Minkowski’s bound will follow

by studying the volume of V/σ(I); in particular, we will use Minkowski’s

Theorem to pick a representative of I in the class group that has some good

properties.

Note first that σ(OK) is a lattice since OK ∼= Zn and σ is an embedding;

further note that if L1,∩L2 are two lattices in V = Rn, A : V → V a
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Don’t immediately see why

NOK/Z(I) = [OK : I1][I−1
2 : OK ]−1

linear map, then vol(V/L2) = vol(V/L1)|det(A)|. This follows from a basic

geometric property of either determinants or of the top differential form

which we used to define vol. We claim that vol(Rn/σ(OK)) = 2−r2
√
|DK |.

To see this, let w1, · · · , wn ∈ OK be a Z-basis for OK , and write the matrix

A whose ith row is

(σ1(wi), · · · , σr1(wi),Re(η1(wi)), · · · ,Re(ηr2(wi)), Im(η1(wi)), · · · , Im(ηr2(wi)))

Then, one can see that σ(OK) = At(Zn) so vol(Rn/σ(OK)) = detA by the

above. To calculate detA, viewing A as an element of Mn(C) for ease of

calculation, we may perform the following operations:

1. Add i times the column Im(ηj(w∗)) to the column Re(ηj(w∗))

2. Multiply all columns Im(ηj(w∗)) by −2i (which changes the determinant

by (−2i)r2)

3. Add each column ηj(w∗) (created in the first step) to the column−2i Im(ηj(w∗))

to produce a column ηj(w∗)

This matrix is now clearly the matrix of all embeddings into Q (no longer

up to conjugation), and hence its determinant is (−2i)r2
√
|DK | by the de-

terminant squared of the matrix of embeddings formulation of the discrim-

inant. Therefore, the claim that vol(Rn/σ(OK)) = |detA| = 2−r2
√
|DK |

follows.

Given I ⊂ K a fractional ideal, note that σ(I) is a lattice with vol(V/σ(I)) =

2−r2
√
|DK |NOK/Z(I). To see that σ(I) is a lattice, note that there exists

m ∈ Z such that mOK ⊆ I ⊆ 1
mOK which one can check prime by prime

by decomposing I into a product of primes; therefore, σ(I) is a lattice since

it is between these two lattices (this is a sketch). For the latter point,

I = I1I
−1
2 where I1, I2 ⊂ OK are integral ideals (this is achieved by taking

I1 to be the product of primes with positive exponent, I−1
2 the negative

exponents), and note that if L1 ⊂ L2 ⊂ Rn are full rank lattices, then

vol(Rn/L1) = vol(Rn/L2)[L2 : L1] by a linear algebra argument which

amounts to a tiling of a fundamental domain for Rn/L1 by the squares of

L2. Then, since I1 ↪→ I1I
−1
2 (since I−1

2 ⊇ OK) and I1 ↪→ OK , we can

calculate

vol(Rn/σ(I)) = vol(Rn/σ(I1))[I−1
2 : OK ]−1

which by the discussion above is equal to

vol(Rn/σ(OK))[OK : I1][I−1
2 : OK ]−1 = 2−r2

√
|DK |NOK/Z(I)

Then, consider f : Rn → R given by

f(x1, · · · , xn) = x1·x2 · · ··xr1−1·xr1 ·(x2
r1+1+x2

r1+1+r2) · · · (x2
r1+r2+x2

r1+2r2)

Note that f(σ(x)) = NK/Q(x) since f takes x to the product of all its

embeddings into Q ⊆ C.
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The last part of this proof is a sketch

which leaves a lot to be verified; a good

resource is Marcus’ Number Fields,
around page 98.

Note that the class group Cl(K) and
class number |Cl(K)| measure, in a

sense, the failure of unique factoriza-

tion in OK ; in particular, if |Cl(K)| =
1, then all fractional ideals are princi-

pal, so OK is a PID and therefore a

UFD. The intuition one should have,
apparently, is that the larger the class

number, the larger the obstruction to
unique factorization.

Let S be a closed bounded convex subset with positive volume and which is

symmetric about the origin, and set M = maxx∈S f(x) which is well-defined

since S is compact and therefore has compact image, where we apply the ex-

treme value theorem. Let c = vol(Rn/σ(I−1)) = 2−r2
√
|DK |NOK/Z(I)−1,

v = vol(S), λ = 2
(
c
v

) 1
n , with

vol(λS) = λn vol(S) = 2n
c

v
v = 2n vol(Rn/σ(I−1))

By Minkowski’s Theorem, there exists b 6= 0 ∈ σ(I−1)∩λS, and let a ∈ I−1

be the element with σ(a) = b. We want to calculate the volume of Rn/σ(aI)

with aI ⊆ OK :

NOK/Z(aI) = NK/Q(a)NOK/Z(I) ≤ λnMNOK/Z(I) =
1

v
M2n−r2

√
|DK |

The rightmost term above is clearly equal to 2r1+r2
√
|DK |Mv−1, so it

remains to find S such that this bound agrees with
(

4
π

)r2 n!
nn . This S is

given by

S =

(x1, · · · , xn) :

r∑
i=1

|xi|+ 2

r2∑
j=1

√
x2
r1+j + x2

r1+r2+j ≤ n


which one can verify satisfies the properties to be satisfied. �

Exercise 15.2.10

Calculate the class groups of Q(
√
−5) and Q(ζ5).

In the first case, the Minkowski bound is
√

20 4
π

2
4 ≈ 2.85 so we only need

to check above 2. One can show that (2) = (2, 1 +
√
−5)2, from which it

follows that Cl(Q(
√
−5)) = Z/(2). For the latter case, if we accept that the

discriminant of Q(ζp) is pp−2 up to sign, it is clear that r1 for Q(ζ5) is 0

(in fact Q(ζ5) is dense in C, as is Z[ζ5]), so the Minkowski bound is around

1.7 so the class group is immediately trivial.

Example 15.2.11

Let f(x) = x5 + ax + b with a, b ∈ Z, α a root of f , K = Q(α)/Q.

First, we calculate the discriminant of Z[α], which we know (up to

sign) is equal to NK/Q(f ′(α)) where f ′(α) = 5α4 + a, so that

αf ′(α) = 5α5 + aα = 5(−aα− b) + aα ⇐⇒ f ′(α) = −4aα+ 5b

α

Then writing f(x) = (x−α1) · · · (x−α5) with α = α1, we have that

NK/Q(4aα+5b) =

5∏
i=1

4aαi+5b = −(4a)5b+5b(4a)4+(5b)5 = 44a5b+55b5

where our calculation essentially follows by the Viète relations on f .

It follows that |N(f ′(α))| =
∣∣44a5 + 55b4

∣∣ since N(α) = b again by

Viète’s relations.
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That the discriminant being square-
free implies that OK = Z[α] sounds fa-

miliar, but I don’t know if we’ve ever
stated it explicitly.

Exercise 15.2.12: Lang, Artin

Let f(x) = x5−x+1. Show that f is irreducible by reducing modulo

3. The discriminant as calculated above is 2869 = 19 · 151 which is

square free so OK = Z[α]. One can show that f has one real root,

so r1 = 1, r2 = 2, which gives

MK =
5!

55

(
4

π

)2√
2869 ≈ 3.3

Therefore, to calculate Cl(K), check for the ideals above 2 and 3.
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Math 254A: Introduction to Algebraic Number Theory Fall 2020

Lectures 21 and 22: 16-18 November

Professor Martin Olsson Abhishek Shivkumar

Dirichlet’s Unit Theorem

Let K/Q be a finite extension, with r1 real embeddings and r2 complex

embeddings up to conjugation, with an embedding σ : K ↪→ K ⊗Q R =

Rr1 × Cr2 as we have discussed previously.

Theorem 16.1.1: Dirichlet’s Unit Theorem

O×K is isomorphic to Zr1+r2−1 up to torsion, where the torsion group

is cyclic, given by the roots of unity in K.

Example 16.1.2

Let K = Q(
√
D) with D > 0, square-free, D ≡ 3 (mod 4), OK =

Z[
√
D], r1 = 2, and r2 = 0. a + b

√
D ∈ Z[

√
D] is a unit iff N(a +

b
√
D) = a2 − Db2 = ±1 (since the norm of an invertible element

must be invertible in Z).

Moreover, a2 − Db2 = −1 has no solutions in the integers because

this would imply that
(−1
D

)
= 1 (where this is the Jacobi symbol for

D not necessarily prime) which is not true since D ≡ 3 (mod 4). It

follows that

O×K = {a+ b
√
D : a2 −Db2 = 1} ∼= Z× Z/(2)

where the latter isomorphism is from the theorem.

The equation x2 − Dy2 = 1 is called a Pell equation, and by the

above, when D ≡ 3 (mod 4), has infinitely many solutions. More-

over, since Z is free, all the solutions (up to torsion, e.g, flipping

sign) are generated by a single solution.

Proof: Consider (K ⊗Q R)×
∼−→ (R×)r1 × (C×)r2

l−→ Rr1+r2 where the first

map is just the restriction of our isomorphism to the group of units, and

the second map is

l(x1, · · · , xr1 , z1, · · · , zr2) = (log |x1|, · · · log |xr1 |, 2 log |z1|, · · · , 2 log |zr2 |)

This map fits into the following commutative diagram:
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That the norm of an invertible element

is invertible uses the believable fact
that NL/K(OL) ⊆ OK which I don’t

know if we have shown or stated previ-

ously.

(K ⊗Q R)× (R×)r1 × (C×)r2 Rr1+r2

K× Q× R× R

∼ l

N Trx 7→x⊗1

NK/Q log |·|

where N is given by

N(x1, · · · , xr1 , z1, · · · , zr2) = x1 · · ·xr1z1z1 · · · zr2zr2

Note that NK/Q(O×K) ⊆ {±1} since the norm of an invertible element must

be invertible, so log
∣∣NK/Q(O×K)

∣∣ = 0 so by commutativity of the right

square, we must have that l(O×K) ⊆ H := ker Tr ⊆ Rr1+r2 (with H ∼=
Rr1+r2−1 since the subspace with trace 0 is one-dimensional). Then, we

claim that λ : O×K → H (defined as the restriction of l) satisfies the following

properties: kerλ is equal to the set of roots of unity in K, and Γ := λ(O×K)

is a full rank lattice (meaning a discrete subgroup whose basis spans the

entire space).

For the first point, note that if xn = 1, then for any embedding τ : K ↪→
C, log |τ(xn)| = 0 = n log |τ(x)| so we must have that log |τ(x)| = 0, so

x ∈ kerλ (since x is clearly a unit with inverse xn−1). Conversely, if

x ∈ kerλ, then log |τ(x)| = 0 ⇐⇒ |τ(x)| = 1 for all embeddings τ as

above, so |τ(x)n| = 1 for all n. It remains to show that τ(x) has finite

order; however, since τ was arbitrary, we may look at the image of x under

σ : OK ↪→ K ⊗Q R which lies in [−1, 1]r1+r2 . Then since OK is a lattice,

and since x was arbitrary, kerλ lies in the intersection of a lattice with

a bounded region, and is therefore finite, so, in particular, τ(x) has finite

order and is therefore a root of unity.

For the second point, we first want to show that Γ ⊆ H is a lattice, e.g, it

is discrete. To see this, note that for any c > 0, the set Sc = Γ ∩ {(xi) ∈
H : |xi| ≤ c} is finite since we can write

Sc = {x ∈ O×K : |log |σi(x)|| ≤ c for all i}

Therefore, for all x ∈ Sc, we have e−c ≤ |σi(x)| ≤ ec for all σi, so Sc embeds

into the intersection of O×K with a bounded domain, and is therefore finite,

since the intersection of a lattice with a bounded region is finite.

Now, we want to show that Γ is a full lattice, e.g, it spans Rr1+r2 ; it

suffices to show that there exists a bounded subset M ⊆ H such that

H =
⋃
γ∈Γ(γ + M), e.g, H is the union of the translates by Γ of some

bounded fundamental domain M .

Supposing that such an M exists, let W ⊂ H be the span of Γ (note that

we are assuming strict inclusion), with H = W × V for some V nonzero

and orthogonal to W , with π : H → V . Note that π(γ + M) = π(M) for

M since γ ∈ V so π
(⋃

γ∈Γ(γ +M)
)

= π(M) ⊆ V which is bounded since
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This is a very strange proof, I’m not

sure if I’ve transcribed it correctly.

Very convoluted proof. Unsure if I have

all the details right.

M is bounded, and therefore is not all of V (which is unbounded). This is

a contradiction since π
(⋃

γ∈Γ(γ +M)
)

= π(H) = V since π is surjective,

from which it follows that V = 0 and Γ spans H.

To see that such an M exists, define S = {y ∈ (R×)r1 × (C×)r2 : N(y) =

±1} which is the kernel of the following chain:

(R×)r1 × (C×)r2
l−→ Rr1+r2 Tr−→ R

and therefore clearly surjects onto H = ker Tr.

Now, given the real and complex embeddings (σi and ηi as above), pick con-

stants c1, · · · , cr1 , cr1+1, · · · , cr1+r2 > 0 such that their (adjusted) product

C satisfies

C =

r1∏
i=1

ci

r2∏
i=1

c2r1+i >

(
2

π

)r2 √
|DK |

and set X = {(xj) ∈ (R×)r1×(C×)r2 : |xj | < cj} which has volume πr22r1C

since each complex term gives a circle and each real term gives an interval.

By the assumption on C, we now have that vol(X) > 2r1+r2
√
|DK |. Now,

recall that vol(Rn/σ(OK)) = 2−r2
√
|DK | from the proof of Theorem 15.2.3,

which gives us that

vol(X) > 2r1+2r2 vol(Rn/σ(OK)) = 2n vol(Rn/σ(OK))

from which we may apply Minkowski’s Theorem (15.2.9), which tells us

that there exists a 6= 0 in σ(OK) ∩X. Given y = (yi) ∈ S, notice that the

volume of X · y is equal to the volume of X, so in fact, Xy ∩ σ(OK) also

contains a nonzero element by the same argument.

By the lemma below (Lemma 16.1.4), given a ∈ Z, up to units, there exist

finitely many α ∈ OK with N(α) = a. Therefore, picking some fixed integer

larger than C, we have finitely many elements α1, · · · , αN ∈ OK such that

for all a ∈ OK with 0 <
∣∣NK/Q(a)

∣∣ ≤ C, a = εαi for some i with ε ∈ O×K .

Let T = S ∩
⋃N
i=1Xα

−1
i . We claim that M = l(T ) is the region we want.

First, note that T is bounded since it is the the intersection of S with the

union of a finite number of bounded regions. Moreover, S =
⋃
ε∈O×K

Tε; to

see this, fix y ∈ S, with a 6= 0 ∈ O×K such that a ∈ Xy−1 (by previous

discussions), so that

|N(a)| =
∣∣N(x)N(y−1)

∣∣ = |N(x)| < C

so αi = εa for some i, ε ∈ O×K . Therefore, y = xa−1 = xεα−1
i ; moreover,

xα−1
i ∈ S ∩Xα

−1
i ⊆ Γ so y ∈ Tε, from which the claim follows since y was

arbitrary in S. �
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Exercise 16.1.3

Let K = Q(
√
D) with D > 0, square-free, D 6≡ 1 (mod 4). Show

that there is an action ofO×K on the set of solutions to the equationx2−
Dy2 = n for any n. Further, show that the quotient of the solution

set by this action is finite.

The first part is easy, since solutions to x2 −Dy2 = n are just elements of

Z[
√
D] = OK with norm n. Clearly, multiplication of x+ y

√
D (which is of

norm n) by elements of norm 1 (O×K) will produce another norm n element,

since the norm is multiplicative. For the second part, we need a lemma:

Lemma 16.1.4

Given n ∈ Z, there exist finitely many α1, · · · , αN ∈ OK such that

if α ∈ OK has norm n, then α = εαi for some ε ∈ O×K . In fact, if

α, β ∈ OK with N(α) = N(β) = n, and α ∼= β (mod nOK), then α

and β differ by a unit.

Proof: Suppose α = β + nγ with γ ∈ OK . Then α
β = 1 + N(β)

β γ with
N(β)
β ∈ OK since N(β) is just β multiplied by all of its conjugates (in

the Galois case, and a similar statement is true generally via looking at

embeddings into Q. Similarly, β
α = 1 − N(α)

α γ ∈ OK with N(α)
α ∈ OK as

above. It follows that, since both fractions of α and β are in OK , αβ ∈ O
×
K ,

so the latter claim is proven, which implies the former claim via the unit

theorem. �
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I didn’t fully follow the meaning of this

discussion.

We proved this result in homework, so
a proof is omitted here.

Proof omitted here as well.

Math 254A: Introduction to Algebraic Number Theory Fall 2020

Lecture 23: 23 November

Professor Martin Olsson Abhishek Shivkumar

Pell’s Equation

Let D ∈ Z be square-free and positive, with D 6≡ 1 (mod 4). In this case,

K = Q(
√
D) has r1 = 2, r2 = 0, OK = Z[

√
D], with O×K ∼= Z/(2) × Z via

the unit theorem, together with the observation that a field extension with

only real embeddings always has precisely 2 roots of unity (±1). Finding

the units is equivalent to solving the equation

N(a+ b
√
D) = a2 −Db2 = ±1

where the equation x2 − Dy2 = 1 is the classical Pell equation, with

x2 − Dy2 = n its natural generalization. By Lemma 16.1.4, it is useful

to understand solutions to x2 −Dy2 = 1 in order to understand solutions

to x2 −Dy2 = n.

Definition 17.1.1: Fundamental Unit

When O×K has free part Z, a fundamental unit is an element α ∈ O×K
which multiplicatively generates the free part.

Set Un to be the subset of O×K with norm n, with U1 in fact a subgroup.

U1 is index 1 or 2 in O×K depending on whether the fundamental unit has

norm 1 or −1, and U1 acts multiplicatively on Un for any n.

In the case that D ≡ 1 (mod 4), which we have excluded from discussion

thus far, we still have that O×K ∼= Z/(2)×Z even though O×K ∼= Z
[

1+
√
D

2

]
,

with the sequence Z[
√
D]× ↪→ O×K → (OK/(2))× exact.

Theorem 17.1.2

Let u = a + b
√
D be a unit in O×K , where a, b ∈ Z, u > 1, and b

minimal. Then u is a fundamental unit with norm one.

Theorem 17.1.3

Let D 6≡ 1 (mod 4) and squarefree, u ∈ O×K = Z[
√
D]× with norm

1. Then every solution of x2 −Dy2 = n is of the form ur(a+ b
√
D)

with |a| ≤
√
|n|(1+

√
u)

2 and |b| ≤
√
|n|(1+

√
u)

2
√
D

.
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Example 17.1.4: due to Brian Conrad

Consider the equation x2 − 82y2 = 31; we want to find all integer

solutions. We know that there exists a finite number of elements

α1, · · · , αr ∈ OK (where K = Q(
√

82)) such that N(α) = 31 implies

that α = urαi where u ∈ O×K is a fundamental unit. One can show

that u = 9 +
√

82 which has norm −1, so (9 +
√

82)2 = 163 + 18
√

82

has norm 1.

Theorem 17.1.3 gives us that |a| ≤ 53 and |b| ≤ 5, and manual

search can show that 31 + 82b2 is not a perfect square within these

bounds, so this equation has no integer solutions. s1 =
(

101
3 , 11

3

)
is a

Q-solution, which we will see generates infinitely many Q-solutions.

s2 =
(

149
11 ,

15
11

)
is another Q-solution, and since s1 is well-defined

mod p for every prime but 3, and s2 is well-defined mod p for every

prime but 11, we may conclude that our equation has solutions mod

p for all primes p.

This is an important example because it shows that it is impossible

to determine whether x2 − 82y2 = 31 has integer solutions via con-

gruences alone, since the equation is solvable mod p for all primes

p, but is not solvable in the integers.

We may interpret the equation x2−Dy2 = n geometrically by homogenizing

the equation to x2−Dy2 = nz2 and viewing it as a projective curve over C
(e.g a variety C in P2

C). For solutions [a, b, c] with c 6= 0, we may set c = 1

and we obtain the usual solutions a2 − Db2 = n with a, b ∈ C. If c = 0,

then [a, b, c] is “at∞,” and a2−Db2 = 0, so neither coordinate can be 0, so

we may set b = 1, so a = ±
√
D. Therefore, viewing this curve projectively

gives us two extraneous solutions.

However, via some algebraic geometry, we know that C is a genus 0 curve,

and is therefore birational to P1 (in fact isomorphic to P1 as we will see). To

see this, first recall the standard description of the isomorphism P1
C
∼= S2:

think of the complex plane as bisecting a sphere along a great circle, and

take the stereographic projection from the “north pole” of the sphere to C.

Then, fixing c ∈ CQ (where CQ restricts C to the rational solutions, and

assuming CQ is nonempty) the idea is that we may define a map CQ → P1
C

via the stereographic projection taking c to ∞ (e.g the sphere is embedded

with the north pole “above” c).

More explicitly, consider H = {[a, b, 0]} ⊂ P2
Q which is a line in projective

space, equal to Q∪{∞}. Using the general fact that any two distinct lines

in projective space meet at precisely one point (parallel lines in projective

space meet at infinity), given any y ∈ CQ, set Lcy to be the unique line

between c and y, whose intersection Lcy ∩H with H is a single point. This
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A quick Python script finds u = 80 +

9
√

79.

defines a map C → H given by y 7→ Lcy ∩H.

Exercise 17.1.5

Write down a formula for Lcy ∩H.

Exercise 17.1.6

Find a norm one fundamental unit for D = 79.
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Math 254A: Introduction to Algebraic Number Theory Fall 2020

Lectures 24 and 25: 30 November - 2 December

Professor Martin Olsson Abhishek Shivkumar

Zeta Functions

Let K/Q be a number field, N = [K : Q], with r1 real embeddings, r2

complex embeddings up to conjugation (σi and ηi, respectively), DK the

discriminant, w the number of roots of unity in K, e.g, the size of the torsion

part of O×K . Recall that H is the kernel of Rr1+r2 Tr−→ R, so
∧r1+r2−1

H ∼=
R, and we have a short exact sequence

0→ H → Rr1+r2 → R→ 0

Recall that the free part of O×K embeds in H via the logarithmic embedding.

Definition 18.1.1: Regulator

The regulator of K as above is a number R given by the image of

1 ∈
∧r1+r2−1

(O×K)free
∼= Z in R. Alternatively, one may define the

regulator as the determinant of the logarithmic map l written as a

matrix.

Definition 18.1.2: Zeta Function

The zeta function of K is

ζK(s) =
∑
I⊆OK

1

N(I)s

When K = Q, the ideals are indexed by the natural numbers, so ζQ(s) =∑∞
n=1

1
ns , which is the ordinary Riemann zeta function.

Theorem 18.1.3

ζK(s) is an analytic function for Re(s) > 1− 1
N except for a simple

pole at s = 1, with residue

2r1(2π)r2RhK

w
√
|DK |

where hK is the class number.
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The proof is left as an exercise.

This is pretty much just a transcript of
what was said in lecture, I have no real

understanding of what this means but
I assume it’s just inequality bashing.

This follows basically from unique
prime factorization as a formal identity,
a little more work is required for an an-

alytic identity. A reference is Ahlfors,
Complex Analysis.

Lemma 18.1.4: Summation by Parts (Abel’s Transform)

Let an, bn be sequences, and set An = a1+· · ·+an, Bn = b1+· · ·+bn.

Then
N∑
n=1

anbn = ANbN +

N−1∑
n=1

AN (bn − bn+1)

Proposition 18.1.5

Consider a series
∑∞
n=1

an
ns with an ∈ C. If this series converges for

some s = s0, then it converges for all s with Re(s) > Re(s0), and

this convergence is uniform in any compact subset of this region.

Proof: Let ns = ns0ns−s0 , Pn(s0) =
∑n
m=1

am
ms0 . For n > m, we have

n∑
k=m+1

ak
ks0

1

ks−s0
=
Pn(s0)

ns−s0
+

n−1∑
k=m+1

Pk(s0)

[
1

ks−s0
− 1

(k + 1)s−s0

]
− Pm(s0)

(m+ 1)s−s0

by the above lemma, and similarly,

n∑
k=1

ak
ks0

1

ks−s0
=
Pn(s0)

ns−s0
+

n−1∑
k=1

Pk(s0)

[
1

ks−s0
− 1

(k + 1)s−s0

]
whose difference is

m∑
k=1

ak
ks0

1

ks−s0
=
Pm(s0)

ms−s0
+

m−1∑
k=1

Pk(s0)

[
1

ks−s0
− 1

(k + 1)s−s0

]
Note that

1

ks−s0
− 1

(k + 1)s−s0
= (s− s0)

∫ k+1

k

1

xs−s0+1
dx

If Re(s) ≥ Re(s0) + δ for δ > 0, then
∣∣ 1
xs−s0+1

∣∣ ≤ ∣∣ 1
x1+δ

∣∣. Since Pk(s0)

converges as k →∞, we may therefore bound the right hand side above as

follos:∣∣∣∣∣
n−1∑

k=m+1

Pk(s0)

[
1

ks−s0
− 1

(k + 1)s−s0

]∣∣∣∣∣ ≤ C|s− s0|
∫ n

m+1

1

x1+δ
dx ≤ C|s− s0|

(
1

nδ
− 1

(m+ 1)δ

)
so if |s− s0| is bounded, then the error is bounded. �

Exercise 18.1.6

Show that

ζK(s) =
∏

p⊂OK

1

1−N(p)−s

Definition 18.1.7: Abscissa of Convergence

The abscissa of convergence for a given series is defined to be the

smallest real number σ0 such that
∑∞
n=1

an
ns converges for Re(s) >
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Another inequality bash that I have no
real understanding of.

σ0.

Proposition 18.1.8

Assume that there exists C and σ1 ≥ 0 s.t

|An| = |a1 + · · ·+ an| ≤ Cnσ1

for all n. Then the abscissa of convergence is ≤ σ1.

Example 18.1.9

For ζ(s) the ordinary Riemann ζ function, an = 1 for all n, so

we may take C = σ1 = 1, so the proposition implies that ζ(s) is

convergent for Re(s) > 1.

Proof:

Pn(s)−Pm(s) =
An
ns

+

n−1∑
k=m+1

Ak

[
1

ks
− 1

(k + 1)s

]
=
An
ns

+

n−1∑
k=m+1

Aks

∫ k+1

k

1

xs+1
dx

Let δ > 0, Re(s) ≥ σ1 + δ. By assumption, we have∣∣∣∣∣Ak
∫ k+1

k

1

xs+1
dx

∣∣∣∣∣ ≤ C
∫ k+1

k

1

xRe(s)−σ1+1

Therefore, Pn(s)−Pm(s) ≤ C
ns +C |s|δ

1
(m+1)δ

from which the result follows.

�

Theorem 18.1.10

ζ(s) is analytic for Re(s) > 0 except for a simple pole at s = 1 with

residue 1.

Proof: Consider

ζ2(s) = 1− 1

2s
+

1

3s
− · · ·

By the proposition, ζ2 is analytic for Re(s) > 0, since An is either 1 or 0.

Note that 2
2s ζ(s) + ζ2(s) = ζ(s) which implies that

ζ(s) =

(
1− 1

2s−1

)−1

ζ2(s)

The above equality shows that ζ(s) is analytic for Re(s) > 0, except at

poles which can only be at the values s = 2πin
log 2 + 1. To whittle this down,

we repeat the above argument with

ζ3(s) = 1 +
1

2s
− 2

3s
+

1

4s
+

1

5s
− 2

6s
+ · · ·

which gives a factorization

ζ(s) =

(
1− 1

3s−1

)−1

ζ3(s)
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That ϕ is uniquely determined here

hinges upon σ1 < 1.

Note that ideals of the same class need

not have the same norm, since principal
ideals are obviously not always norm 1.

which in turn implies that the poles are among s = 2πin
log 3 + 1, which implies

that the only pole of ζ(s) is at s = 1.

It remains to calculate the residue of ζ(s) at s = 1. Suppose s > 1, and

note that, by the left and right sums approximating ζ(s) as a series, we

have
1

s− 1
≤
∫ ∞

1

1

xs
dx ≤ ζ(s) ≤ 1 +

1

s− 1

which implies that

1 ≤ lim
s→1

(s− 1)ζ(s) ≤ lim
s→1

(s− 1) + 1 = 1

so lims→1(s − 1)ζ(s) = 1 from which it follows that the residue of ζ(s) at

s = 1 is 1, as claimed. �

Theorem 18.1.11

Let an be a sequence of complex numbers,

f(s) =

∞∑
n=1

an
ns

Assume there exists C > 0, ϕ, and 0 ≤ σ1 < 1 such that |An − nϕ| ≤
Cnσ1 where An = a1 + · · ·+an. Then f(s) has analytic continuation

to Re(s) > σ1, except for a simple pole with residue ϕ at s = 1.

Proof: Consider

g(s) = f(s)− ϕζ(s) =

∞∑
n=1

an − ϕ
ns

By Proposition 18.1.8, g(s) has abscissa of convergence ≤ σ1, and since

ϕζ(s) has pole ϕ at s = 1, it follows that g does as well. �

Define now

ζK(s, η) =
∑

I⊆OK ,[I]=η

1

N(I)s
=
∞∑
n=1

an
ns

where the first sum is over the ideals in the class determined by η, and the

latter (equal) sum is where an is equal to the number of ideals I with norm

n and class η, with corresponding An given by the number of ideals I with

norm at most n in the class of η.

Proposition 18.1.12

An = ϕn+O
(
n1− 1

N

)
where

ϕ =
2r1(2π)r2RhK

w
√
|DK |

We will not show this, although this result is within the scope of the tools

we’ve developed. This shows that |An − ϕn| ≤ Cn1− 1
N for all sufficiently
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Λ is generally Ql when talking about

Galois representations, which we are

apparently talking about.

I don’t know what Frobp means here. I
know that x 7→ xp is an automorphism

of Fp, so maybe this somehow lifts to

an element of Gal(Q/Q)? I don’t really
even know how our map

(
D
−
)

is well-

defined here.

large n. Note that ϕ above does not depend on the choice of η, which can

be understood by noting that choosing a different class of ideals essentially

shifts the lattice we are summing over, which does not affect asymptotic

growth; this in turn implies that the statement of Theorem 18.1.3 is true

if we replace ζK(s) with ζK(s, η) (by various of the above results), and in

fact, ζK(s) =
∑
η∈Cl(K) ζK(s, η), from which Theorem 18.1.3 itself follows.

Exercise 18.1.13

Define ζK(s) for K = Q(
√
D) with D square-free.

Recall the product expansion

ζK(s)
∏

p⊂OK

1

1−N(p)−s
=

∏
p prime

∏
p|p

1

1−N(p)−s

which splits as a product into the products over the ramified primes, over

the inert primes, and over the split primes. The inert primes contribute

terms (1− p−2s)−1, and the split primes contribute terms (1− p−s)−2; we

omit discussion of the ramified primes for the moment.

Consider Λ, a field of characteristic 0, and V = Λ{K↪→Q} which has an

action by Gal(Q/Q). In our case, V = Λ2 with σ±(
√
D) = ±

√
D.

Consider
(
D
−
)

: Gal(Q/Q) � Z/(2) = {±1} given by taking Frobp to
(
D
p

)
.

Frobp acts on V by the identity when
(
D
p

)
= 1, and by permutation when(

D
p

)
= −1 (e.g, by the matrix ( 0 1

1 0 )). It follows that

det
(
1− tFrob−1

p |V
)

=

(1− t)2
(
D
p

)
= 1

1− t2
(
D
p

)
= −1

Therefore, ζK(s) can be written as

ζK(s) = R
∏

p prime

Lp(V, p
−s)

where Lp(V, t) = det
(
1− tFrob−1

p |V
)−1

and where R is the contribution

from the ramified primes. The moral point of this discussion is that ζK(s)

is controlled by the action of Gal(Q/Q) on V , e.g, a Galois representation.

Note that ζK only depends on OK , so we may generalize the situation

of OK over Z by replacing OK with any finitely generated Z-algebra A,

e.g, A = Z[x1, · · · , xn]/(f1, · · · , fm), and write ζ(A, s) =
∏
p prime ζp(A, s),

where ζp(A, s) is the number of maximal ideals in A ⊗Z Fp counted with

weight, e.g, the number of solutions in the fi in Fp.
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No idea what this last bit meant. Fun

class, though.

Example 18.1.14

Let A = Z[t], with

ζ(A, s) =
∏

p prime

(1− p1−s)

This zeta function corresponds to the Galois representation χp :

Gal(Qp/Qp) → Z×p where χp is a cyclotomic character. To under-

stand this action, choose a system of elements xn ∈ Qp with x0 = 1,

xpn = xn−1, and set g(xn) = xαnn where αn ∈ (Z/(pn))
×

, α0 = 1,

α ∈ lim←−(Z/(pn))× = Z×p .
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The table Vojta is writing on has beau-
tiful grain, looks like curly white oak.

We won’t prove this result in this

course, but we might use it to prove
Faltings’ Theorem.

Math 254A: Introduction to Algebraic Number Theory Spring 2021

Lectures 1-3: 20-25 January

Professor Paul Vojta Abhishek Shivkumar

Administrative Stuff

No official textbook, mostly Professor Vojta’s notes. Auxiliary references

include Lang’s Fundamentals of Diophantine Geometry, Neukirch’s Alge-

braic Number Theory, Hartshorne’s Algebraic Geometry, Vakil’s The Rising

Sea, and Lang’s Introduction to Arakelov Theory. Homework will be given

every week or other week. Knowledge of 254A and 256A are assumed as

prerequisite.

The course will begin with a survey of the classical theory of diophantine

geometry (heights and Weil functions), then Arakelov theory (application

of algebraic geometry to diophantine geometry), towards the ultimate goal

of proving Mordell’s conjecture (Faltings’ Theorem) or Roth’s theorem.

Lectures will probably continue into RRR week.

Conventions for the course: N starts at 0, all rings are commutative and

have 1, and ring homomorphisms are assumed to map unity to unity.

Four Main Theorems of Diophantine Geometry

Theorem 19.2.1: Mordell-Weil

Let A be an elliptic curve or abelian variety over a number field k.

Then the set of k-rational points A(k) is a finitely generated abelian

group.

The second result is Northcutt’s finiteness theorem (which we do not state

here), which is an end result of the development of the classical theory of

heights.

The third result is Schmidt’s subspace theorem, a special case of which is

Roth’s Theorem:
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Theorem 19.2.2: Roth

Given α ∈ Q, ε > 0, c ∈ R≥0, there are finitely many rational

numbers x = p
q ∈ Q such that |x− α| ≤ c

|q|2+ε .

The final result is Mordell’s conjecture/Faltings’ Theorem:

Theorem 19.2.3

Let C be a curve of genus g > 1 over a number field k. Then the

set C(k) of k-rational points on C is finite.

Roth’s theorem has the following Diophantine corollary:

Corollary 19.2.4

For all N ∈ Z, the equation x3−2y3 = N has finitely many solutions

(x, y) ∈ Z2.

Proof: There is at most one solution with y = 0 (N can have at most one

integer cube root). If y 6= 0, then

x3 − 2y3 = (x− 3
√

2y)(x2 +
3
√

2xy +
3
√

4y2) = N

Then, we may write∣∣∣∣xy − 3
√

2

∣∣∣∣ =
N

y(x2 + 3
√

2xy + 3
√

4y2)
≤ c N
|y|3

after which we may apply Roth’s theorem, from which the result follows.

�

The idea of this proof is to look at the graph of y = 3

√
x3−N

2 which has a

strong asymptote given by y = x
3√2

; this is the geometry of our diophantine

approximation.

Definitions and Foundations

Definition 19.3.1: Varieties

Let k be an arbitrary field, then (for this course), a variety over k

(or a k-variety) is an integral scheme, separated and of finite type

over k. A morphism of k-varieties is a morphism of schemes over k.

This definition gives us a category of varieties over a given field k; the

primary case of interest for us will be when k is a number field. Note that

we require varieties to be integral (equivalently, reduced and irreducible),
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A scheme X over a field k is geometri-

cally integral if for every field extension
k ⊆ k′ and every x′ ∈ Xk′ over x ∈ X,

the local ring OXk′ ,x′ is integral.

This is where lecture 2 begins, we’re

backtracking a bit and defining some
terms we’ve already been using.

This example partially justifies the pre-

fix “geometric” in use here, as this al-

ternative notion of integrality rules out
pathologies introduced by the lack of
algebraic closure.

but not necessarily geometrically integral. There is no universal standard

for this, and other authors may use other conventions.

Question 19.3.2

Let P be the point
√

2 on A1
Q. Does this make sense?

Tautologically, this is not defined, but there is well-defined point corre-

sponding to the Galois orbit {±
√

2} of
√

2 over Q.

Question 19.3.3

Consider the closed subscheme
√

2 in A1
Q. Does this make sense?

This subscheme is the above point, now with reduced induced subscheme

structure, e.g, SpecQ[x]/(x2 − 2) = SpecQ(
√

2) ↪→ SpecQ[x] = A1
Q.

Many commonly used terms in algebraic geometry often have multiple def-

initions in wide use, which can lead to confusion. For example, an elliptic

curve over a field k either means a nonsingular cubic y2z = x3 +axz2 + bz3

in P2
k (with a, b ∈ k), or the corresponding curve in P2

k
where k is a fixed

algebraic closure of k. Similarly, a projective variety over k means either

a geometrically integral closed subscheme of Pnk , or an integral closed sub-

scheme X of Pn
k

that can be defined by homogeneous polynomials with

coefficients in k (equivalently, there exists a subscheme X0 of Pnk such that

X corresponds to X0 ×k k under the isomorphism Pn
k

= Pnk ×k k).

Definition 19.3.4: Geometric adjectives

A scheme X over a field k is geometrically integral if X ×k k is

integral. Likewise for geometrically irreducible and geometrically

reduced.

Example 19.3.5

LetX = V (y2−2x2) ⊆ A2
Q = SpecQ[x, y], e.g, X = SpecQ[x, y]/(y2−

2x2) which looks like the intersection of two lines. This is an integral

scheme, since
√

2 6∈ Q, so (y2 − 2x2) is a prime ideal as y2 − 2x2

is irreducible. X is not geometrically integral or geometrically irre-

ducible as y2 − 2x2 factors as (y −
√

2x)(y +
√

2x) in k[x, y] for any

field k containing
√

2.

Recall that a scheme is reducible if it can be written as the union of two

proper closed subsets (equivalently, it contains two disjoint nonempty open

subsets), and that a (nonempty) scheme is irreducible if it cannot be written

in this way.
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We’ve written X ×k K where K is a

field in several places above; this is non-

sense if read literally, and is shorthand
for X ×k SpecK; this holds true more

generally if K is replaced with a ring.

The proof of this is omitted to avoid
doing too much algebraic geometry.

Exercise 19.3.6: Hartshorne II.3.15a

Let X be a scheme of finite type over a field k. Then, the following

are equivalent:

1. X ×k k is irreducible

2. X ×k ksep is irreducible (where ksep is the separable closure of k)

3. X ×k K is irreducible for all extensions K of k

Towards this exercise, we have the following general results:

Lemma 19.3.7

Let E/F be a field extension and let Y be a scheme over F . Then

YE = Y ×F E, and let π : YE → Y be the canonical projection. If

Y is nonempty, then so is YE .

Proof: If Y is nonempty, then Y ⊇ U = SpecA, and A 6= 0, so AE :=

A ⊗F E is also nontrivial as a vector space over F (since it is the tensor

product of two nonzero vector spaces), so π−1(U) = SpecAE is nonempty,

from which the result follows. �

Lemma 19.3.8

If Y is reducible, then so is YE .

Proof: By assumption, let U1, U2 be disjoint nonempty open subsets in Y ,

so π−1(Ui) are disjoint nonempty open subsets of YE , from which the result

follows. �

Lemma 19.3.9

If Y is of finite type over F and E/F is purely inseparable, then

π : YE → Y induces a homeomorphism of the underlying topological

spaces.

Lemma 19.3.10

If Y is noetherian and irreducible, then every irreducible component

of YE dominates Y via π, e.g, the image of each component is dense

in Y (or, equivalently, the generic point of Y is in the image of each

irreducible component).

Proof: Let Z be an irreducible component of YE , ζ its generic point,

U = SpecA an affine open neighborhood of π(ζ) in Y . Let

UE = π−1(U) = U ×F E = Spec(A⊗F E) = SpecAE

Since E is flat as an F -module, A ×F E is flat over A, so the Going-

Down theorem of commutative algebra applies. Let P ′ ⊆ A be the prime
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There was some more discussion af-

ter this but I didn’t follow it or the
rest of this proof. This proof is prob-

ably incomplete. We also discussed

how to apply these results to solve the
Hartshorne exercise, but it was a sketch

that I don’t feel like going back and fill-

ing in at the moment.

Professor Vojta notes that he does not
remember exactly why this is true.

corresponding to the generic point η of Y , P ⊆ A the prime corresponding

to π(ζ), Q ⊆ AE the prime corresponding to ζ. Then Q ∩ A = P and

P ′ ⊆ P , so, by Going-Down, there exists a prime Q′ of AE such that

Q′ ⊆ Q and Q′ ∩A = P ′. Let ζ ′ be the point in SpecAE corresponding to

Q′, then ζ ′ specializes to ζ and π(ζ ′) = η. �

The moral of this result (together with our above example demonstrating

the inadequacy of the non-geometric adjectives) is that when you go to a

larger field, irreducible components may become reducible, but they don’t

disappear, they don’t change dimension (this is not explicitly shown above,

but follows by looking at transcendence degrees), and different irreducible

components don’t coalesce. Moreover. if X is an integral scheme over a field

k, E/k a normal algebraic field extension, then all irreducible components of

XE are conjugates under Gal(E/k). One can show that, in characteristic

0, all irreducible components of XE are geometrically integral iff E contains

the algebraic closure of k in K(X).

Heights of Algebraic Numbers

The height of a number, to be defined, is essentially a measure of its com-

plexity.

Definition 19.4.1: Rational Heights

Let x ∈ Q, x = p
q in lowest terms. Then the multiplicative height of

x is

HQ(x) = max(|p|, |q|)

and the logarithmic height of x is

hQ(x) = logHQ(x) = log max(|p|, |q|)

Proposition 19.4.2

For all c ∈ R, the set {x ∈ Q : HQ(x) ≤ c} is finite (and similarly

for hQ(x)).

Proof: HQ(x) ≤ c iff −c ≤ p ≤ c and −c ≤ q ≤ c, from which the result is

immediate. �

We can now restate Roth’s Theorem in a way which will suggest general-

ization when heights over number fields are defined:
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Proof taken from 254A homework.

Theorem 19.4.3: Roth

Given α ∈ Q, ε > 0, c ∈ R≥0, the set {x ∈ Q : |x− α| ≤ c
HQ(x)2+ε }

is finite.

In Theorem 19.2.2, we had |q| in place of HQ(x); trivially, |q| ≤ HQ(x), so
c

HQ(x)2+ε ≤
c

|q|2+ε , so our original formulation implies this revised version.

In fact, one can show the converse as well, i.e, the two formulations are

equivalent.

HQ and hQ roughly measure the complexity of a rational number (for ex-

ample, hQ(x) is, up to linear functions, the number of decimal digits of p

and q); we’d like to generalize this definition to x ∈ Q, to Pn(Q), and more

generally to X(Q) where X is a variety over a number field. We’d also like

to generalize to the case where Q is replaced with F (t) for F a field (and

consequently Q is replaced with F (t)).

Definition 19.4.4

LetMQ = {∞, 2, 3, 5, 7, 11, · · · } be the set of places of Q (equivalence

classes of absolute values on Q). For all ν ∈MQ, let

‖x‖ν =

|x| ν =∞
|x|p ν = p

Proposition 19.4.5: Product Formula for Q∏
ν∈MQ

‖x‖ν = 1

for all x 6= 0.

Proof: Write

x = (−1)l
pn1

1 · · · pnrr
qm1
1 · · · qmss

where the pi and qj are distinct primes, and l represents the sign of x.

Note the obvious fact that |x|p = 1 for primes not among the pi or qj (since

νp(x) = 0 for such primes). Furthermore, |x|pi = p−nii and |x|qj = q
mj
j .

Then ∏
ν∈MQ

‖x‖ν =
qm1
1 · · · qmss
pn1

1 · · · p
nr
r
|x|∞ = 1

where the last equality follows by noting that

|x|∞ =
pn1

1 · · · pnrr
qm1
1 · · · qmss

As we noted above, this infinite product makes sense since it can have only

finitely many terms which are not 1. �
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Proof omitted here, not too hard to
check though. No real content besides

a few substitutions.

Proposition 19.4.6

For all x ∈ Q,

HQ(x) =
∏
ν∈MQ

max(1, ‖x‖ν)

Let k be a number field, Mk the set of places of k (a place of k being an

equivalence class of nontrivial absolute values on k), and recall that if |·|1
and |·|2 are equivalent, then there exists s > 0 such that |x|1 = |x|s2 for all

x ∈ k×.
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Do not know anything about Haar mea-

sures, nor what kν means.

Math 254B: Arakelov Theory Spring 2021

Lectures 4 and 5: 27-29 January

Professor Paul Vojta Abhishek Shivkumar

Heights

Let k be a number field. Recalling Definition 9.1.6, let M0
k and M∞k de-

note the sets of non-archimedean (or finite) and archimedean (or infinite)

places of k, and let ρ1, · · · , ρr be the real and σ1, σ1, · · · , σs, σs the complex

embeddings k ↪→ C. M∞k is in canonical bijection with the set

{ρ1, · · · , ρr, {σ1, σ1}, · · · , {σs, σs}}

in such a way that if ν ∈ M∞k corresponds to ρ or {σ, σ}, then ν is repre-

sented by the absolute value x 7→ |ρ(x)| or x 7→ |σ(x)| =
∣∣∣σ(x)

∣∣∣.
Definition 20.1.1

A place ν ∈ Mk is real or complex if it is archimedean and cor-

responds to one of the embeddings k ↪→ C, in which case we may

define ‖x‖ν as |ρ(x)| or |σ(x)|2 as above (which gives us an “abso-

lute value” as opposed to an equivalence class). Note that |x|ν is

not technically a norm when ν is complex, as the triangle inequality

fails.

The non-archimedian places of k are in canonical bijection with the set of

nonzero prime ideals of Ok in such a way that ν ∈ M0
k corresponding to

p 6= 0 ∈ SpecOk is represented by the absolute value ‖·‖ν on k defined by

‖x‖ν =

(Ok : p)−νp(x) x 6= 0

0 x = 0

These norms have the property that, for all x ∈ k, multiplication by x

multiplies the Haar measure on the additive group kν by ‖x‖ν .

Proposition 20.1.2

Let L/k be number fields, ν ∈Mk. Then∏
ω∈ML
ω|ν

‖x‖ω =
∥∥NL

k x
∥∥
ν
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In particular, Nk
Qx is just a nonzero el-

ement of Q, so the product over norms

result applies. Note that p ∈MQ allows
for p =∞.

Not a priori clear to me that the sum
in hk converges. Probably something

to do with all but finitely many terms
being 0.

This follows immediately by the prod-

uct formula.

It does not make sense, a priori, to

evaluate hk or Hk on an element of k,
but these definitions allow us to and are
consistent by the above corollary.

for all x ∈ L. In particular, for x ∈ k,∏
ω∈ML
ω|ν

‖x‖ω = ‖x‖[L:k]
ν

Corollary 20.1.3: Product Formula

Let k be a number field, then∏
ν∈Mk

‖x‖ν = 1

for all x ∈ k∗.

Proof: Let x ∈ k∗, then Nk
Qx ∈ Q∗, so∏

ν∈Mk

‖x‖ν =
∏
p∈MQ

∏
ν∈Mk
ν|p

‖x‖ν =
∏
p∈MQ

∥∥Nk
Qx
∥∥
p

= 1

where the first equality is just grouping, the second equality follows by the

above proposition, and the third equality follows by the product formula

for Q. �

Definition 20.1.4: Heights on Number Fields

Let k be a number field. Then

Hk(x) :=
∏
ν∈Mk

max(1, ‖x‖ν)

and

hk(x) = logHk(x) =
∑
ν∈Mk

log max(1, ‖x‖ν)

are the multiplicative and logarithmic heights of x ∈ k.

Proposition 20.1.5

Let L/k be number fields, x ∈ k. Then HL(x) = Hk(x)[L:k], and

hL(x) = [L : k]hk(x).

Corollary 20.1.6

Let k be a number field, x ∈ k. Then 1
[L:k]hL(x) is independent of

a choice of L/k(x).

Definition 20.1.7

Let k be a number field, x ∈ k. Then hk(x) := 1
[L:k]hL(x) and

Hk(x) := HL(x)1/[L:k] for any number field L/k(x).
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Function Fields in One Variable

Let F be an arbitrary field, t an indeterminate over F , k = F (t). Then k is

the function field of the nonsingular projective curve P1
F over F . Note that

P1
F ⊇ A1

F = SpecF [t]; this allows us to consider an analogy to number fields

where k plays the role of Q, F [t] the role of Z, and the set of closed points

on P1
F identify with MQ. Note that the set of closed points on P1

F (denoted

Mk) is equal to the set of closed points of A1
F together with ∞ = P1

F \A1
F ,

where the closed points of A1
F correspond bijectively to maximal ideals of

F [t].

By our analogy, we want to define ‖·‖ν for ν ∈Mk; however, (F [t] : p) will

be infinite if F is infinite. To remedy this, we have the following definition:

Definition 20.2.1

Let ν ∈Mk. Then for all α ∈ k, define ‖α‖ν by

‖α‖ν =


e−(deg f)νp(α) if ν corresponds to p = (f) ∈ SpecF [t]

e−ν∞(α) if ν corresponds to ∞
0 α = 0

where ν∞(α) = deg b − deg a where α = a
b , a, b ∈ F [t] and where

νp(α) is the ordinary p-adic valuation on k.

Proposition 20.2.2: Product Formula for F (t)∏
ν∈Mk

‖α‖ν = 1

for all α ∈ k×.

Proof: Taking logs, this is equivalent to∑
ν∈Mk

− log ‖α‖ν = 0

for all α ∈ k×, which we can rearrange as

ν∞(α) +
∑
p

(deg f)νp(α) = 0

This is true for all α ∈ F× since all terms in the sum vanish, and is true for

all monic irreducible α since all terms vanish except for v∞(α) = −deg f

and (deg f)vp(α) = deg f which cancel (where p = (f) as above). Therefore

the formula holds for all of k× since monic irreducible α generate k× as a

group, and α 7→
∑

p− log ‖α‖p is a group homomorphism from k× to Z. �

Note that for all closed points P of SpecF [t] (maximal ideals of F [t]), the

residue field at P is κ(P ) = F [t]/p = F [t]/(f) where P corresponds to
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If you wind through this defini-

tion together with the norms above,

it turns out that hk

(
f(t)
g(t)

)
=

max(deg f(t), deg g(t)) where f and g
are coprime.

The proof is omitted.

p = (f), so [κ(P ) : F ] = deg f . Since κ(∞) = F , the logged product

formula for F (t) reads ∑
P∈Mk

[κ(P ) : F ]νp(α) = 0

for all α ∈ k×, i.e, the degree of the principle divisor (α) on P1
F is 0.

Note also that we may use any real number c > 1 in place of e in the

definition of ‖·‖ν ; in particular, if F is a finite field Fq, then we may use

c = q.

Definition 20.2.3: Heights on F (t)

Let k = F (t). For all α ∈ k, let

Hk(α) :=
∏
ν∈Mk

max(1, ‖α‖ν)

and

hk(α) := logHk(α) =
∑
ν∈Mk

log max(1, ‖α‖ν)

Proposition 20.2.4

Let α ∈ F (t)×, with α = a/b, and with a, b ∈ F [t] relatively prime.

Then hk(α) = max(deg a,deg b).

Example 20.2.5

Let k = F (t), then hk(t − a) = 1 for all a ∈ F . This shows that,

for c ∈ R, if F is infinite, then the set {α ∈ F (t) : hk(α) ≤ c} may

be infinite (and will be infinite for large enough c). In general, such

points can be parameterized by sets of F -points of schemes of finite

type over F .

Theorem 20.2.6

Every finitely generated field extension k/F is the function field of

a variety over F . The dimension of this variety equals the transcen-

dence degree of k over F .

Proof: Let α1, · · · , αr generate k over F , e.g, k = F (α1, · · · , αr). Let

A = F [α1, · · · , αr]. Then SpecA is a variety over F which satisfies our

claim (see Hartshorne I Theorem 1.8A). �

Note that SpecA is an affine variety in ArF , so we can also use the projective

closure of SpecA in PrF for our variety in this result, i.e, our variety can

be taken to be projective. This variety is only unique up to birational

equivalence over F .
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Proof is in a handout.

Don’t understand the significance of
any of this algebraic geometry. t :

C → A1
F makes sense, unique exten-

sion makes sense, how are we using it?

Theorem 20.2.7

If k has transcendence degree 1 over F , then the variety is a curve,

and we may assume that it is a nonsingular projective curve over F .

In this case, it is unique (up to isomorphism over F ).

Definition 20.2.8: Function Fields

A function field over F in d variables is a finitely generated field

extension of F of transcendence degree d.

Let k be a function field in one variable over F , and choose a transcendence

base for k over F . It will have exactly one element, which we denote as t.

Then k is an algebraic extension of F (t), and k is finitely generated over

F (t), hence is finite over F .

Let C be a nonsingular projective curve over F such that k = K(C) over

F . Then the rational t ∈ k gives a rational function t : C → A1
F which

extends uniquely to t : C → P1
F because C is normal of dimension 1 and

P1
F is proper over F (using the valuative criterion of properness).
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A scheme is normal if the local ring at
each point is integrally closed in its field

of fractions. Also this proof is the first

time I’ve understood normalization.

Theorem 6.1.6 assumes that L/k is sep-

arable, but according to Professor Vo-

jta, this identity holds more generally
as well.

Math 254B: Arakelov Theory Spring 2021

Lectures 6 and 7: 1-3 February

Professor Paul Vojta Abhishek Shivkumar

Northcott’s Theorem

Let F be an arbitrary field, k a function field in one variable over F , C a

nonsingular projective curve over F such that K(C) ∼= k. We have shown

that we may choose t ∈ k transcendental over F which provides a singleton

transcendence base for k/F , which gives a morphism t : C→ P1
F over F .

Proposition 21.1.1

If L is a finite extension of k, C ′ a nonsingular projective curve

over F s.t K(C ′) ∼= L, then there exists a unique finite morphism

ϕ : C ′ → C that induces the inclusion k ↪→ L.

Proof: Let C ′ be the normalization of C in L, e.g, for all open affines

U = SpecA in C, let B be the integral closure of A in L. This construction

commutes with localization, so as U varies, the schemes SpecB over U glue

to give a well-defined scheme C ′ over C. C ′ is normal by construction, and

finite over C by finiteness of the integral closure (Theorem 6.1.2). Therefore,

C ′ is proper over C, and hence projective over F (see Hartshorne I.6).

Since K(C ′) ∼= L, by uniqueness of the curve giving the field, we are done,

with ϕ given by the normalization morphism. �

Now let P ∈ C be a closed point, and let A = OC,P the corresponding

local ring, B the integral closure of A in L; this is a semilocal ring (whose

maximal ideals correspond to points of ϕ−1(P )) and since A and B are

both Dedekind domains, Theorem 6.1.6 applies:∑
Q∈SpecB
Q 6=0

eQ/P fQ/P = [L : k]

In algebraic geometry (see Vakil 17.4.5-6 and 17.4.D-E) if t ∈ A is a uni-

formizer, then

degϕ =
∑
Q6=0

νQ(ϕ∗t)[κ(Q) : κ(P )] =
∑
Q6=0

eQ/P fQ/P

Vakil defines degϕ to be the rank of ϕ∗OC′ which he proves to be locally

free, and which can therefore be found by looking at the stalks at the generic
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I don’t think I’ve seen this definition

of degree before, need to see what hap-
pens if we assume that F = C or some-

thing.

Not immediately clear to me why there
are no archimedean places.

points γ, γ′ of C and C ′ respectively:

degϕ = dimκ(γ) κ(γ′) = dimk L = [L : k]

Note that for a divisor D =
∑
i niPi on a nonsingular projective curve

C over an arbitrary field F (not necessarily algebraically closed), degD is

defined to be
∑
i[κ(Pi) : F ]ni so the product formula for F (t) follows from

the fact that the degree of the principal divisor (α) on P1
F is zero for all

α ∈ F (t)×, since [κ(P ) : F ] is 1 if P = ∞, and deg f if P corresponds to

(f) ⊆ F [t]. Taking logs, the product formula says that

0 =
∑

P∈MF (t)

− log ‖α‖P =
∑
P

[κ(P ) : F ]νP (α) = deg(α) = 0

Let k be a function field over F in one variable, X a nonsingular projective

curve over F such that K(X) = k. Then Mk (relative to F ) is in canonical

bijection with the set of closed points of X, as follows: for each closed P ∈
X, the local ring OX,P is a DVR, let νP denote its valuation (normalized

so that νP (k×) = Z), and let κ(P ) denote the residue field. Replacing an

earlier definition (when k = F (t)), let Mk = {νP : P a closed point of X}.
Note that P 7→ νP is a bijection from the closed points of X to Mk.

We then define ‖α‖ν similarly, in a way that agrees with the earlier defini-

tion where k = F (t):

‖α‖ν =

e−[κ(P ):F ]νP (α) α ∈ k×

0 α = 0

This definition is more general in that it does not require choosing a tran-

scendence base in t. As before, note that M∞k = ∅ and M0
k = Mk, as there

are no archimedean places.

Proposition 21.1.2

Let L/k be finite extensions of F (t), and let ϕ : X ′ → X be the

corresponding morphism of nonsingular projective curves over F .

Then for all ν ∈Mk, all α ∈ L,∏
ω∈ML
ω|ν

‖α‖ω =
∥∥NL

k α
∥∥
ν

where ω|ν means the closed points Q ∈ X ′ and P ∈ X corresponding

to ω and ν respectively are related by ϕ(Q) = P .

Proof:∥∥NL
k α
∥∥
ν

=
∏
ω∈ML
ω|ν

∥∥∥NLω
kν
α
∥∥∥
ν

=
∏
ω∈ML
ω|ν

∥∥∥NLω
kν
α
∥∥∥1/[Lω:kν ]

ω
=
∏
ω|ν

‖α‖ω
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The proof is essentially the same as the

previous product formula proofs.

I think the first half of this is obvious

over Q, interesting that it holds more
generally.

where the various intermediate equalities are results from Bourbaki, Neukirch,

and Neukirch II. �

This gives the product formula for function fields in one variable over F :

Corollary 21.1.3

Let k be as above, then
∏
ν∈Mk

‖α‖ν = 1 for all α ∈ k×.

Definition 21.1.4: Heights on Function Fields

Let k be a function field in one variable over a field. Then

Hk(α) :=
∏
ν∈Mk

max(1, ‖α‖ν)

and

hk = logHk(α) :=
∑
ν∈Mk

log max(1, ‖α‖ν)

As before, if L/k is a finite extension (with compatible ML and Mk), then

hL(α) = [L : k]hk(α), so we may define hk(α) = 1
[L:k]hL(α) for all α ∈ k,

where L is any finite extension of k containing α.

Note that most authors use the convention that hk(α) and Hk(α) are only

defined for α ∈ k and call them relative heights, with absolute heights being

given by h : Q→ R and H : Q→ R (in the number field case) to be what

we refer to as hQ and HQ respectively. We always use absolute heights,

where the subscript indicates normalizations. In the function field case,

there’s no canonical “bottom field,” since k ⊇ F (t) ⊇ F (t2) ⊇ · · · .

Theorem 21.1.5: Northcott

Let k be a number field, C ∈ R. Then the set {α ∈ k : Hk(α) ≤ C}
is finite, and, more generally, for all d > 0, the set

{α ∈ k : [k(α) : k] ≤ d and Hk(α) ≤ C}

is finite.

Remark 21.1.6

In diophantine geometry, you often want to prove finiteness of k-

rational points, and this is often done by bounding the height.

Definition 21.1.7

Let k be a field, and ‖·‖ a norm on k. Let f(t) = ant
n + · · · +

a0 be a polynomial in k[t] with n ≥ 0; then, we define ‖f‖ =

max(‖a0‖, · · · , ‖an‖).
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The proof is left as an exercise. The
second statement is easier in the Ga-

lois case, but the Galois hypothesis is

unnecessary.

This inequality follows by the non-
archimedean property (in the non-

archimedean case) together with the
triangle inequality (in the archimedean

case). This inequality is not sharp in

the archimedean case, in fact, we have

‖α1 + · · ·+ αn‖ν ≤ nmax(‖α1‖ν , · · · , ‖αn‖ν)

by the triangle inequality.

The constants 2±nNν come from the

archimedean property of |·| on C,
and they go away at non-archimedean
places.

Recall that Gauss’ lemma states
that cont(fg) ⊆ cont(f) cont(g) ⊆√

cont(fg), where cont(f) is the ideal

generated by the coefficients of f .

Definition 21.1.8

Let k be a number field and let f ∈ k[t] with deg f > 0. Then

Hk(f) =
∏
ν∈Mk

‖f‖ν .

Note that by the product formula, Hk(cf) = Hk(f) for all c ∈ k×. More-

over, Hk(α) = Hk(t−α) where the left height is that of a number, the right

height that of a polynomial.

Definition 21.1.9

Let k be a number field, α ∈ k, then we define Hancient,k(α) = Hk(f)

where f is the monic irreducible polynomial of α over k.

Lemma 21.1.10

Let L/k be number fields. Then HL(f) = Hk(f)[L:k] for all noncon-

stant f ∈ k[t]. Moreover, let σ : L→ L be a k-automorphism of L.

Then HL(σ(α)) = HL(α) for all α ∈ L.

Definition 21.1.11

Let k be a number field or function field, and let ν ∈Mk. Then Nν

is defined to be 0 if ν is non-archimedean, 1 if ν is real, and 2 if ν is

complex.

Note that
∑
ν∈Mk

Nν is [k : Q] when k is a number field (via the n = r1+2r2

identity) and 0 when k is a function field (since the places are all non-

archimedean). Further note that for all α1, · · · , αn ∈ k,

‖α1 + · · ·+ αn‖ν ≤ n
Nν max(‖α1‖ν , · · · , ‖αn‖ν)

Lemma 21.1.12

Let k be a number field, α1, · · · , αn ∈ k, and let f(t) =
∏n
i=1(t −

αi) ∈ k[t]. Then, given ν ∈Mk,

2−nNν
n∏
i=1

max(1, ‖αi‖ν) ≤ ‖f‖ν ≤ 2nNν
n∏
i=1

max(1, ‖αi‖ν)

Proof: If ν is non-archimedean, then the given inequalities follow from the

fact that

‖f‖ν =

n∏
i=1

max(1, ‖αi‖ν) =

n∏
i=1

‖t− αi‖ν

which in turn follows from Gauss’ lemma from commutative algebra. If ν is

archimedean, it will suffice to prove the given inequalities with k replaced

by C (since all such places are essentially the ordinary complex norm) and

‖·‖ν replaced by |·|. We will only prove the second inequality (the first
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inequality is a lot harder, and we won’t be using it as much), but this

is easy since for all d = 0, 1, · · · , n the coefficient of tn−d in f is (up to

sign) the elementary symmetric polynomial of degree d in the αi, which

has
(
n
d

)
≤ 2n terms and all coefficients 1, from which the results follow. �

Proposition 21.1.13

Let k be a number field, α ∈ k. Then

2−[k(α):Q]Hk(α)(α) ≤ Hancient,k(α) ≤ 2[k(α):Q]Hk(α)(α)

Proof: Let L be a finite normal extension field of k that contains α,

α1, · · · , αn the conjugates of α over k in L, and f(t) =
∏n
i=1(t−αi). Then

f is the irreducible polynomial for α over k, n = [k(α) : k]. Applying the

previous lemma by taking the product of the inequalities over all ω ∈ML,

we obtain( ∏
ω∈ML

2Nω

)−n n∏
i=1

HL(αi) ≤ HL(f) ≤

( ∏
ω∈ML

2Nω

)n n∏
i=1

HL(αi)

Note that

HL(f) = Hk(f)[L:k] = Hancient,k(α)[L:k]

and
∏n
i=1HL(αi) = HL(α)n, and that

∏
ω∈ML

2Nω = 2[L:Q]. Substituting

these into the above inequalities and taking the [L : k]th root of all parts

gives

2−[k:Q]nHk(α)(α) ≤ Hancient,k(α) ≤ 2[k:Q]nHk(α)(α)

from which the result is immediate, since [k(α) : k] = n. �
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I don’t fully understand the reduction

to k = Q. It seems that k can only

ever be Q, in which case this all makes
sense, but then I don’t understand why

we write k at all.
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Proof of Northcott’s Theorem

Recall Proposition 21.1.13; this result has an analogue over function fields

in one variable (as usual), although in that case, the proposition says that

Hancient,k(α) = Hk(α)(α) and can be fully proved (we only proved one of

the two inequalities in Lemma 21.1.12) without much difficulty. With these

preliminaries, we are ready to prove Theorem 21.1.5:

Proof: It clearly suffices to show that

{α ∈ k : [k(α) : k] ≤ d and Hk(α) ≤ C}

is finite for all d > 0, since finiteness of {α ∈ k : Hk(α) ≤ C} is clearly a

special case of this. We may assume that C ≥ 1, since otherwise, our set

will be empty. Replacing k with Q, d with [k : Q]d, and C with C [k:Q],

we may assume that k = Q. By Proposition 21.1.13, it will suffice to show

that the set

Σn := {α ∈ Q : [Q(α) : Q] = n and Hancient,Q(α) ≤ 2nC}

is finite for all n = 1, · · · , d. These sets are finite since, for all α ∈ Σn,

clearing denominators in the irreducible polynomial for α over Q gives a

polynomial of degree n in Z[t] whose coefficients (assumed collectively rel-

atively prime) are bounded in absolute value by 2nC. Only finitely many

polynomials satisfy these constraints, and each polynomial can contribute

at most finitely many elements of Σn. �

Heights on Pn

For the rest of this chapter, function fields are assumed to be function fields

in one variable over a field F .

Definition 22.2.1: Heights on Projective Spaces

Let k be a number field or function field, n ∈ N, and let P ∈ Pn(k).
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Confused about the interspersed usage

of Pnk and Pn(k), unsure if that’s ac-
tually a meaningful difference or not.
Maybe one is a scheme?

Let [x0 : · · · : xn] be homogeneous coordinates for P , then

Hk(P ) :=
∏
ν∈Mk

max(‖x0‖ν , · · · , ‖xn‖ν)

and

hk(P ) := logHk(P ) =
∑
ν∈Mk

log max(‖x0‖ν , · · · , ‖xn‖ν)

This is well-defined since∏
ν∈Mk

max(‖αx0‖ν , · · · , ‖αxn‖ν) =
∏
ν∈Mk

max(‖x0‖ν , · · · , ‖xn‖ν)

for all α ∈ k× by the product formula (since ‖αβ‖ν = ‖α‖ν‖β‖ν). As

before, if L is a finite extension of k, then HL(P ) = Hk(P )[L:k] and hL(P ) =

[L : k]hk(P ), so we may again define Hk(P ) = HL(P )1/[L:k] for all P ∈
Pn(k) and any field L finite over k for which P ∈ Pn(L).

If you identify α ∈ k or α ∈ k with A1(k) or A1(k), with A1 itself identified

with an open subset of P1 as usual, then α 7→ [1 : α] gives bijections

i : k → P1(k) \ {∞} and i : k → P1(k) \ {∞} for which hk(α) = hk(i(α))

and similarly for k.

Lemma 22.2.2

Let P ∈ Pn(k) with homogeneous coordinates [x0 : · · · : xn]. If

x0 6= 0, then Hk

(
xi
x0

)
≤ Hk(P ) for all i = 1, · · · , n.

Proof: Choose a field L finite over k, such that xi ∈ L for all i. Then, by

the above,

HL

(
xi
x0

)
=

∏
ω∈ML

max(‖x0‖ω, ‖xi‖ω) ≤
∏

ω∈ML

max(‖x0‖ω, · · · , ‖xn‖ω) = HL(P )

�

Theorem 22.2.3: Northcott for Pn(k)

Let k be a number field, n ∈ N, d ∈ Z>0, and C ∈ R. Then

{P ∈ Pn(k) : [k(P ) : k] ≤ d and Hk(P ) ≤ C} is a finite set, where

k(P ) is the residue field at P ∈ Pn(k).

Proof: By permuting coordinates, it suffices to show that

{P ∈ Pn(k) ∩D+(x0) : [k(P ) : k] ≤ d and Hk(P ) ≤ C}

is a finite set, where D+(x0) = {p ∈ Pn(k) : x0 6∈ p}. This follows from the

above lemma together with the original Northcott theorem. �
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Not sure I really understand the signif-
icance of Mk-constants.

Note that for all k, n ∈ Z>0, the height function hk : Pn(k) → R is

not invariant under Aut(Pnk ), since hk is not constant but Aut(Pnk ) acts

transitively on Pn(k). We shall see, however, that for all ϕ ∈ Aut(Pnk ),

hk(ϕ(P )) = hk(P ) + O(1) as P varies over Pn(k), where the constant in

O(1) depends on ϕ and k but not P .

Definition 22.2.4: Mk-constants

Fix a number field or function field k. Then an Mk-constant γ is a

function ν 7→ γν from Mk to R such that γν = 0 for all but finitely

many ν ∈Mk.

These form a group under addition, and in fact an R-vector space. We

say that γ ≥ 0 if γν ≥ 0 for all ν, and γ ≥ γ′ if γ − γ′ ≥ 0. Also let

|γ| denote
∑
ν∈Mk

γν . Finally, for all finite extensions L of k, all ω ∈ ML,

and all Mk-constants γ, we write γω = [Lω : kν ]γν where ω ∈ ML lies

over ν ∈ Mk, and Lω and kν are the completions. Then, as with heights,

|γ| = 1
[L:k]

∑
ω∈ML

γω and log ‖α‖ω ≤ γω ⇐⇒ log ‖αν‖ ≤ γν for all ω, ν as

above, all α ∈ kν .

We have already defined oneMk-constant: Nν which is 0 for non-archimedean

ν, 1 for ν real, and 2 for ν complex is an Mk-constant, with |N | =∑
ν∈Mk

Nν = [k : Q] in the case of number fields, and 0 in the case of

function fields. As above, Nω = [Lω : kν ]Nν with ω over ν.

Example 22.2.5

Let a0, · · · , an ∈ k, not all zero. Then

γν = log max(‖a0‖ν , · · · , ‖an‖ν)

defines an Mk-constant γ.

Note that if L/k is a finite extension, and ω ∈ ML lies over ν ∈ Mk, then

γω = log max(‖a0‖ω, · · · , ‖an‖ω) (via ‖a‖ω = ‖a‖[Lω:kν ]
ν ).

Lemma 22.2.6

Let n ∈ N, ϕ ∈ Aut(Pnk ). Then

hk(ϕ(P )) = hk(P ) +O(1)

for all P ∈ Pn(k), where the implied constant in O(1) depends only

on k and ϕ, but not P .

Proof: By Hartshorne II 7.1.1, the map GLn+1(k)→ Aut(Pnk ) given by

M 7→



x0

. . .

xn

 7→M


x0

. . .

xn



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This covers all points in Pn(k).

The inequality with the term
Nω log(n+ 1) is obtained by the

following chain:

‖yi‖ω =

∥∥∥∥∥∥
∑
j

aijxj

∥∥∥∥∥∥
ω

≤ (n+1)Nω max(‖aijxj‖ω)

The right hand side of the above is in

turn bounded above by

(n+ 1)Nω max(‖aij‖ω) max(‖xi‖ω)

and max(‖aij‖ω) ≤ eγω from which

the result follows.

induces an isomorphism PGLn+1(k)
∼−→ Aut(Pnk ). Let M ∈ GLn+1(k) be a

matrix corresponding to ϕ, and write M = (aij). Then ϕ([x0 : · · · : xn]) =

[y0 : · · · : yn], where yi =
∑
j aijxj . For all L finite over k, ω ∈ ML, we

have

max(‖y0‖ω, · · · , ‖yn‖ω) ≤ (n+ 1)Nω max(‖aij‖ω) max(‖x0‖ω, · · · , ‖xn‖ω)

for all [x0 : · · · : xn] ∈ Pn(L).

Let γ be the Mk-constant γν = log max ‖aij‖ν for 0 ≤ i, j ≤ n. Then for

all L, ω, and all [x0 : · · · : xn] as above, we have

log max(‖y0‖ω, · · · , ‖yn‖ω) ≤ log max(‖x0‖ω, · · · , ‖xn‖ω)+γω+Nω log(n+ 1)

Therefore, summing over all ω ∈ML, and dividing by [L : k], we have

hk(ϕ(P )) ≤ hk(P ) + |γ|+ |N | log(n+ 1)

Let γ′ be the Mk-constant defined similarly to γ, but with M−1 in place of

M . Then, we similarly obtain

hk(P ) ≤ hk(ϕ(P )) + |γ′|+ |N | log(n+ 1)

from which the result follows. �

Lemma 22.2.7

Let n ∈ Z>0, V and W linear subspaces of Pnk with V ∩W = ∅,
and dimV + dimW = n − 1. Let ϕ : Pnk \ V → W be the linear

projection

P 7→ Span(P, V ) ∩ V

Let X be a closed subscheme of Pnk with X ∩ V = ∅. Then

hk(ϕ(P )) = hk(P ) +O(1)

for all P ∈ X(k), with the implied constant depending only on k,

X, and ϕ.

Proof: By the previous lemma, we may take an automorphism of Pnk and

thereby assume that V is given by x0 = · · · = xm = 0, and W by xm+1 =

· · · = xn = 0 where 0 ≤ m < n. In this basis, ϕ is given by

[x0 : · · · : xn] 7→ [x0 : · · · : xm : 0 : · · · : 0] ∈W

Therefore, the ≤ inequality is easy since

max(‖x0‖ω, · · · , ‖xm‖ω) ≤ max(‖x0‖ω, · · · , ‖xn‖ω)

as m < n.

To prove the other inequality, we will start with the special case m = n−1,

so ϕ is the projection from the point Q = [0 : · · · : 0 : 1]. We claim there
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This section of the proof is completely

meaningless to me, just some weird in-
equality bash. This proof is overly long
as written here, and poorly structured;

the claim we use in the middle should
probably be proved separately earlier
as a proposition.

is an Mk-constant γ with the following property: for all finite extensions

L/k, all P = [x0 : · · · : xn] ∈ X(L), all ω ∈ML,

‖xn‖ω ≤ e
γω max(‖x0‖ω, · · · , ‖xn−1‖ω)

To see this, let ν ∈M∞k (in the case of number fields), and choose σ : k ↪→ C
corresponding to ν. Let L be a finite extension of k, ω ∈ML lying over ν.

Then ω ∈ M∞L , and σ extends to τ : L ↪→ C corresponding to ω. We get

maps SpecC→ SpecL→ Spec k corresponding to the chain of embeddings,

and may define XC = X ×k C; then XC is a closed subscheme of PnC not

containing QC := [0 : · · · : 0 : 1] ∈ Pn(C). Since X(C) is a closed subset of

Pn(C) in the classical topology, it is compact, so the continuous function

[x0 : · · · : xn] 7→ |xn|
max(|x0|, · · · , |xn−1|)

on XC(C) has a maximum M (by the extreme value theorem). Then the

desired inequality holds with γν = Nν logM , and γω = Nω logM for all L

and ω ∈M∞L , ω lying over ν.

In the other case, ν ∈ M0
k , Pn(kν) is compact if k is a global field, but

is not compact if k is a function field over an infinite field, and in any

case, Pn(kν) is never compact. However, since Q 6∈ X, there exists a

homogeneous polynomial f ∈ k[t0, · · · , tn] which vanishes at all points of

X but not at Q. Write

f(t) =
∑
|i=d|

ait
i

in multi-index notation, where d = deg f . Since f(Q) 6= 0, i.e, Q 6∈
D+((f)), a(0,··· ,o,d) 6= 0 since this is the coefficient of tdn and must be nonzero

for f(Q) to be nonzero. We may assume a(0,··· ,o,d) = 1. Let L/k, P ∈ X(L),

ω ∈ML above ν be as in the claim, and let ω ∈ML. If P = [x0 : · · · : xn],

and xn = 0, then

‖xn‖ω ≤ e
γω max(‖x0‖ω, · · · , ‖xn−1‖ω)

holds trivially, so we may assume xn 6= 0, and therefore that xn = 1. Since

f(P ) = 0, ∑
|i=d|

i6=(0,··· ,d)

aix
i = −a(0,··· ,o,d)x

d
n = −1

Therefore, since ω is non-archimedean, some term in the sum has ‖·‖ω ≥ 1.

Therefore, there exists a multi-index i such that |i| = d, i 6= (0, · · · , 0, d),

and
∥∥aixi∥∥ω ≥ 1. This gives∥∥ai∥∥ω max(‖x0‖ω, · · · , ‖xn−1‖ω)i0+···+in−1 ≥

∥∥aixi∥∥ω ≥ 1

so

log max(‖x0‖ω, · · · , ‖xn−1‖ω) + max
|i|=d,ai 6=0

i6=(0,··· ,0,d)

log
∥∥ai∥∥ω

i0 + · · ·+ in−1
≥ 0
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Therefore, letting

γν = max
|i|=d,ai 6=0

i6=(0,··· ,0,d)

log
∥∥ai∥∥ν

i0 + · · ·+ in−1

the desired inequality holds for all ω|ν, and ν 7→ γν is clearly an Mk-

constant, since the assignment is 0 for almost all ν ∈ Mk, from which the

claim follows.

With the claim in hand, let γ′ = max(γ, 0) taken coordinate wise at each

ν ∈Mk, then the claim holds with the key inequality above replaced by

max(‖x0‖ω, · · · , ‖xn‖ω) ≤ eγ
′
ω max(‖x0‖ω, · · · , ‖xn−1‖ω)

Taking logs, summing over ω ∈ML, and dividing by [L : k], we obtain

hk(P ) ≤ hk(ϕ(P )) + |γ′|

for all L finite over k, all P ∈ X(L).

This settles the special case m = n − 1. For the general case, we may

induct on n−m; assume n−m > 1, and by induction, assume the case of

n−m− 1. We have the following diagram:

Pn \ {Q} W0

X Pn \ V W0 \ V ′ W

ϕ0

ϕ0|Pn\V ϕ′

ϕ

The maps ϕ0 and ϕ′ respectively act by

[x0 : · · · : xn] 7→ [x0 : · · · : xn−1 : 0] 7→ [x0 : · · · : xm : 0 : · · · : 0]

Here, W0 is the set given by xn = 0, V ′ = V ∩ W0 = ϕ(V \ {Q}), so

ϕ−1
0 (V ′) = {x0 = · · · = xm = 0} \ {Q} = V \ {Q}. And, X ∩ V = ∅ so

ϕ0(X)∩ϕ0(V \ {Q}) = ∅ which in turn implies that ϕ0(X)∩ V ′ = ∅. Also

X ′ := ϕ0(X) is a closed subscheme of W0 with reduced induced subscheme

structure by Hartshorne II 4.4. Then

hk(ϕ(P )) = hk(ϕ′(ϕ0(P ))) = hk(ϕ0(P )) +O(1) = hk(P ) +O(1)

by the above and by induction, for all P ∈ X(k). �
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In this context, coherent means finite

rank.

Vector sheaves are the same data as

vector bundles.

This is mostly a sketch.
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Heights on Varieties

We’ve seen that, under certain transformations, heights are invariant up to

adding O(1). We will see that in more general transformations, heights are

scaled by a positive integer, again up to O(1).

Definition 23.1.1: Vector Sheaves

A line sheaf on a scheme X is a locally free sheaf of OX -modules

of rank 1, also called an invertible sheaf. More generally, a vector

sheaf on X is a coherent locally free sheaf on X, assumed to have

constant rank.

Note that, given f : X → Y a morphism of schemes, L a line sheaf on X,

f∗L is not necessarily a line sheaf, or even a vector sheaf, on Y . For example,

take X = A1
k, k a field, f : X → Spec k, L = OX . Then f∗OX = k[x] (since

Spec k is a point) which is locally free of infinite rank. More pathologically,

if X = Y = A1
k, f : X → Y the constant function 0, then f∗OX is the

skyscraper sheaf k[x] at 0, which is not locally free.

Pullbacks are better behaved than pushforwards:

Proposition 23.1.2

Let f : X → Y be a morphism of schemes, E a vector sheaf on Y ,

then f∗E is a vector sheaf on X of the same rank.

Proof: f∗OY ∼= OX by Hartshorne II 5.2e, or by applying the definition of

f∗. Therefore, f∗OrY ∼= OrX for all r, so pulling back vector sheaves looks

just like pulling back vector bundles: you can trivialize locally, write out

transition maps on intersections, and pull them back to combine Orf−1(U)

and Orf−1(V ) on f−1(U) ∩ f−1(V ) = f−1(U ∩ V ). �

One can also define tensor products of vector sheaves, and, again, pullbacks

of these behave well.
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Based on the linear flow of time, I kind
of thought that this example would

maybe talk about Pic(Pnk ) = Z, but I

guess that that point was left to sub-
text.

Our goal is to build up to this re-
sult. The point of the normalization re-
quirement is that our height functions

are actually meaningful, otherwise we
could just set the 0 function for each

height.

If L is generated by a single section, I

think it should be trivial.

Definition 23.1.3: Picard Group

Let X be a scheme, then Pic(X) is the group of isomorphism classes

of line sheaves on X, with group operation ⊗, inverse L 7→ L∗, and

identity element OX .

Example 23.1.4

Let k be a field, n ∈ Z>0. On Pnk = Proj k[x0, · · · , xn], O(1) = ˜S(1)

where S = k[x0, · · · , xn] and S(n) shifts degrees by n. The line

sheaf O(m) can be described by giving the standard open cover

Ui = {xi 6= 0} = D+(xi), local trivializations ϕ : O(m)|Ui
∼−→ OUi

by s 7→ s/xmi , and transition functions fij = (xj/xi)
m.

Theorem 23.1.5: Height Machine

Let k be a number field or function field (in one variable). Then

there is a way to assign to each pair (X,L) of a complete variety X

over k and a line sheaf L on X, a height function hX,L : X(k)→ R
unique up to O(1) satisfying additivity :

hX,L⊗L′ = hX,L + hX,L′ +O(1)

as well as functoriality, as in, for all morphisms f : X → Y of

varieties over k, and for all line sheaves L on Y ,

hX,f∗L = hY,L ◦ f +O(1)

(where f on the right hand side means f(k) : X(k) → Y (k)). Fi-

nally, these heights satisfy the criterion of normalization: if X = Pnk
for some n, then

hPnk ,O(1) = hk +O(1)

for all n ∈ N. In each case, the implied constants do not depend on

the points in X(k) or Pnk (k).

Definition 23.1.6

Let L be a line sheaf on a scheme X. We say that L is globally

generated, or generated by global sections (gbgs) if there exists a

surjective sheaf map O⊕IX → L. Equivalently, for all P ∈ X, there

exists s ∈ Γ(X,L) such that sP 6∈ mPLP .

Moreover, given U an open subset of X, we say that L is globally

generated over U if there exists a sheaf morphism O⊕IX → L whose

restriction to U is surjective.
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The remainder of the theorem is left as

an exercise.

Theorem 23.1.7: Hartshorne II 7.1b

Let X be a scheme over a ring A, L a line sheaf on X, s0, · · · , sn ∈
Γ(X,L) global sections that generate L. Then there exists a unique

A-morphism ϕ : X → PnA such that L ∼= ϕ∗O(1), with si = ϕ∗xi.

Proof: The idea of the proof is to set ϕ in homogeneous coordinates by

[s0 : · · · : sn]. In detail, set Vi = Xsi which are open subsets of X that cover

X (where si generates L over Vi). Then, there exist fij ∈ O(Vi) such that

sj |Vi = fijsi|Vi . Set Ui = D+(xi) ⊆ PnA, e.g, Ui = SpecA[x0/xi, · · · , xn/xi]
(where xi/xi is omitted), and ϕi : Vi → Ui the morphism over SpecA

corresponding to the homomorphism A[x0/xi, · · · , xn/xi] → Γ(Vi,OVi) of

A-algebras given by xj/xi 7→ fij for j 6= i. This implies that P 7→
(fi0(P ), · · · , fin(P )) ∈ AnA by Hartshorne II Exercise 2.4, where again

fii(P ) is omitted, so ϕi has homogeneous coordinates [fi0 : · · · : fin] with

fii = 1 not omitted. By the cocycle condition on the fij , ϕi|Vi∩Vj =

ϕj |Vi∩Vj so the ϕi glue to give a well-defined morphism ϕ : X → PnA. �

Definition 23.1.8

Let X, L, s0, · · · , sn, and ϕ be as above, with s = (s0, · · · , sn).

Then we define

hs,k(P ) = hk(ϕ(P ))

for all P ∈ X(k).

Example 23.1.9

Let X = Pnk , L = O(1), si = xi. Then ϕ : Pnk → Pnk is the identity

map, hs,k = hk.

Example 23.1.10

Let X be proper over k, L = OX , s = (1). Then ϕ is the constant

map X → P0
k = Spec k and hs,k(P ) = 0.

Example 23.1.11

Let X = P1
k, L = O(2), s = (x2

0, x
2
1). Then hs,k(P ) = 2hk(P ) for all

P ∈ X(k).

Example 23.1.12

Let X = P1
Q, L = O(2), s = (ax2

0, x0x1, x
2
1) for some a ∈ Q×. Then

hs,Q = hQ ◦ϕa. This differs from 2hQ by a bounded function, which

is nonconstant unless a = ±1.

We want to define a height function hL,k : X(k) → R. This will be a well

defined map up to adding a bounded function (i.e, the specific values of the
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function do not themselves matter as much as understanding the general

distribution of points of bounded height). Here X is any proper scheme

over k, L any line sheaf, although we will begin with globally generated

line sheaves.

Lemma 23.1.13

Let L be a line sheaf on X. Assume that L is generated by global

sections s = (s0, · · · , sn) and also generated by global sections t =

(t0, · · · , tm). Then

hs,k = ht,k +O(1)

Proof: By comparing hs,k and ht,k with hn,k where n = (s0, · · · , sn, t0, · · · , tm),

we may reduce to the case where t = (s0, · · · , sn, sn+1, · · · , sm) (reusing m

as a different index). Let ϕ : X → Pnk and ψ : X → Pmk be the morphisms

[s0 : · · · : sn] and [s0 : · · · : sm] respectively. Identify Pnk with the linear

subspace xn+1 = · · · = xm = 0 in Pmk ; then, we have a linear projection

Θ : Pmk \ {x0 = · · · = xn = 0} → Pnk as in Lemma 22.2.7, such that the

following diagram commutes:

X

Pmk Pnk

ϕ
ψ

Θ

Since ψ(X) is a closed subset of Pmk (as X is proper) disjoint from {x0 =

· · · = xn = 0}, Lemma 22.2.7 applies, and we have

hs,k(P ) = hk(ϕ(P )) = hk(Θ(ψ(P ))) = hk(ψ(P )) +O(1) = ht,k(P ) +O(1)

�

Lemma 23.1.14

Let L and M be line sheaves on X generated by global systems s

and t respectively. Then

s⊗ t := (si ⊗ tj)i,j

is a generating system of global sections of L ⊗M, and

hs⊗t = hs,k + ht,k

Proof: The first assertion is obvious. For the second assertion, let ϕs :

X → Pnk , ϕt : X → Pmk , and ϕs⊗tX → Pmn+m+n
k (via the Segre embedding)

be the maps determined by our global generating systems. Let P ∈ X(k),

L a finite extension of k such that P ∈ X(L), and let [x0 : · · · : xn] and

[y0 : · · · : ym] be homogeneous coordinates for ϕs(P ) and ϕt(P ) in L,
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This follows easily from the above two

lemmas.

respectively. Then

HL(ϕs⊗t(P )) =
∏

ω∈ML

max
i,j
‖xiyj‖ω =

∏
ω∈ML

max
i
‖xi‖ω max

j
‖yj‖ω = HL(ϕs(P ))HL(ϕt(P ))

Taking logs, we obtain the desired equality. �

Corollary 23.1.15

Let L be a line sheaf on X, with L ∼=M1⊗N∨1 and L ∼=M2⊗N∨2
where M1, N1, M2, and N2 are generated by systems of global

sections s, t, u, and v respectively. Then

hs,k − ht,k = hu,k − hv,k +O(1)
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Recall that A is ample if, for any F
coherent, and sufficiently large n, F ⊗
A⊗n is globally generated.

E.g, if f = g +O(1), then f ∼ g.

If L itself is globally generated, then we
may take M = L, N = OX .

Note that we did not have uniqueness
in the original statement of the height

machine.
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Height Machine

As before, k is a number field or function field in one variable, X is a

projective scheme over k.

Lemma 24.1.1

Let L be a line sheaf on X. Then there exist globally generated line

sheaves M and N on X such that L ∼=M⊗N∨.

Proof: Let A be an ample line sheaf on X. By definition of ampleness,

L ⊗A⊗n and OX ⊗A⊗n are globally generated for all sufficiently large n.

Pick such an n, then take M = L ⊗A⊗n and N = A⊗n. �

Definition 24.1.2

Two real-valued functions on the same domain are said to be equiv-

alent if their difference is a bounded function.

Definition 24.1.3: Height Associated to a Line Sheaf

Let L be a line sheaf on X, M and N such that L ∼= M⊗ N∨

as above. Let s and t be systems of global sections that generate

M and N respectively (which can be taken to be finite since X

is quasi-compact), then hL,k is the equivalence class of hs,k − ht,k
which is well-defined by Corollary 23.1.15. A height function for L
is any such representative of the equivalence class.

Theorem 24.1.4: Height Machine for Projective Schemes

There is a unique way to assign to each pair (X,L) of a projective

scheme over k and a line sheaf on it, a height function hL,k (up

to equivalence) such that the properties in the statement of Theo-

rem 23.1.5 (with “variety” replaced by “projective scheme”) hold.

Proof: Write L ∼= A ⊗ B∨, M ∼= C ⊗ D∨, where A,B, C,D are globally

generated line sheaves on X with generating systems a, b, c, d respectively.

Then, L ⊗M is clearly also globally generated, and by Corollary 23.1.15

and its preceding lemma,

hL⊗M,k = ha⊗c,k − hb⊗d,k = ha,k + hc,k − hb,k − hd,k = hL,k + hM,k
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where the final equality follows by pairing terms. Thus, additivity holds

for our height machine.

For functoriality, with f : X → Y a morphism of projective schemes, let

M ∼= A ⊗ B∨ over Y , with A and B globally generated as above. If a =

(a0, · · · , an), then f∗A is globally generated by f∗a = (f∗a0, · · · , f∗an),

and if a determines a morphism ϕ = [a0 : · · · : an] from Y to Pnk over k,

then f∗a determines a morphism ψ = [f∗a0 : · · · : f∗an] from X to Pnk .

Moreover, ψ = ϕ ◦ f , so

hf∗a,k(ϕ) = hk(ψ(P )) = hk(ϕ(P )) = ha,k(f(P ))

and similarly hf∗b,k(P ) = hb,k(f(P )). Subtracting gives

hf∗M,k(P ) = hM,k(f(P )) +O(1)

for all P as desired.

Finally, for normalization, hO(1),k = hs,k + O(1) = hk + O(1) by Exam-

ple 23.1.9.

It remains to show that this assignment is essentially unique: given L, write

L ∼=M⊗N∨ as before. IfM is globally generated by s = (s0, · · · , sn) and

ϕ : X → Pnk is the map [s0 : · · · : sn], then M∼= ϕ∗O(1); therefore

hM,k(P ) = hO(1),k(ϕ(P )) = hk(ϕ(P )) = hs,k(P )

all up to O(1), where we have applied functoriality and normalization.

Similarly, if N is globally generated by t, then hN ,k = ht,k +O(1), so

hL,k = hM,k − hN ,k = hs,k − ht,k

up to O(1) from which the result follows. �

If X is only quasi-projective (i.e in the case of varieties), you lose unique-

ness, since Lemma 22.2.7 fails when X is not complete, hence hs,k =

ht,k +O(1) no longer holds when s and t both globally generate L.

Additional Properties of Heights

Theorem 24.2.1: Northcott for Projective Schemes

Let X be a projective scheme over k a number field, L an ample line

sheaf on X, and hL,k a height function for L. Then for all d ∈ Z>0,

C ∈ R, the set

{P ∈ X(k) : [k(P ) : k] ≤ d and hL,k(P ) ≤ C}
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Northcott’s theorem as stated fails
when k is a function field.

We need the fact that P ∈ U when as-
suming that w0 6= 0 below.

is finite.

Proof: Pick n ∈ Z>0 such that L⊗n is very ample over k, and let ϕ :

X → PNk be a closed embedding such that L⊗n ∼= ϕ∗O(1). Then, adjusting

C if necessary, we may assume hL,k = 1
nhk ◦ ϕ, and we have an injection

(induced by ϕ) from the set in the theorem statement into

{Q ∈ PN (k : [k(Q) : k] ≤ d and hk(Q) ≤ nc}

which is finite by Northcott’s theorem on PNk , from which the result follows.

�

Proposition 24.2.2: Positivity

Let L be a line sheaf on X a projective scheme, and let hL,k be an

associated height function. If L is gbgs, then hL,k is bounded from

below; moreover if L is generated by global sections over an open

subset U ⊆ X, then hL,k is bounded from below on all P ∈ U(k).

Proof: For the first part, since X is quasicompact, there exists a finite

system of generating global sections s0, · · · , sn. Let ϕ : X → Pnk be the

map [s0 : · · · : sn], then hL,k = hs,k + O(1) ≥ O(1) where the inequality

follows from the fact that hs,k(P ) = hk(ϕ(P )) ≥ 0 for all P ∈ X(k).

For the second part, which is strictly stronger than the first part, note

that since X is noetherian, U is quasicompact, so L is generated over U by

finitely many sections u0, · · · , ul ∈ Γ(X,L). Write L = (L⊗M)⊗M∨ with

M and L ⊗M globally generated line sheaves. Let s = (s0, · · · , sn) be a

generating system for M, t = (t0, · · · , tm) a generating system for L⊗M.

We may assume that u⊗ s is a subset of t by choice of t. We want to show

that ht,k(P ) ≤ hu⊗s,k(P ) = hu,k(P ) + hs,k(P ) for all P ∈ U(k), but hu⊗s,k

is not really defined on X, and likewise for hu,k. However, we do have

hL,k = ht,k − hs,k + O(1) so it suffices to show that ht,k ≥ hs,k on U(k).

To that end, let ϕ : X → Pn, ψ : X → Pm, θ : U → Pl be the maps given

by the global sections s, t, and u respectively. Let L be a finite extension

of k, P ∈ U(L), and let [x0 : · · · : xn], [y0 : · · · : ym], and [w0 : · · · : wl]

be homogeneous coordinates for ϕ(P ), ψ(P ), and θ(P ) respectively. By

permuting indices, we may assume that x0 and w0 are nonzero. Then s0

and u0 generateM and L respectively at P , and s0 ⊗ u0 generates L⊗M
at P . Again, by permuting indices, we may assume that t0 = u0 ⊗ s0, so

y0 6= 0 as well, and we may therefore assume that x0 = y0 = w0 = 1. Then,

since we have assumed that {whxi : 0 ≤ h ≤ l and 0 ≤ i ≤ n} is a subset
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Recall (for convenience) that a line
sheaf is ample if some tensor power of

it is very ample, and a line sheaf is

very ample if it is globally generated by
global sections and the associated mor-

phism to Pn (given by global sections)

is a closed immersion. Many equivalent
forms of these definitions exist (espe-

cially when assuming various adjectives

about the base scheme), and we may be
using a different one for the basis of our

discussion.

By Chow’s lemma, Hartshorne II Ex.
4.10, morphisms g and schemes X′ as

above do exist for all X. Note that the
wording “g is a birational morphism”
means that g is a morphism of schemes

(i.e, regular everywhere on X′) and is

birational (i.e, invertible as a rational
map). This is stronger than simply a

birational map.

of {yj : 0 ≤ j ≤ m}, it follows that

HL(ψ(P )) =
∏
ν∈ML

max(‖y0‖ν , · · · , ‖ym‖ν) ≥

∏
ν∈ML

max{whxi : 0 ≤ h ≤ l and 0 ≤ i ≤ n} =

∏
ν∈ML

max(‖wh‖ν)h
∏
ν∈ML

max(‖xi‖ν)i ≥ HL(ϕ(P ))

where in the final inequality, we have used the fact that HL ≥ 1. Taking

logs, this gives that ht,k(P ) ≥ hs,k(P ), from which the result follows. �

Next, we want to show that heights relative to ample divisors dominate all

other heights, up to constant multiples and O(1).

Proposition 24.2.3

Let L, M, be line sheaves on X, with L ample. Then there is a

constant C, depending only on L and M, such that

hM,k(P ) ≤ ChL,k(P ) +O(1)

for all P ∈ X(k).

Proof: Since L is ample, there exists an integer n such that M∨ ⊗ L⊗n

is globally generated. Then, by positivity, hM∨⊗L⊗n,k ≥ O(1), so nhL,k −
hM,k ≥ O(1), from which the result follows. �

Heights on Proper Schemes

Definition 24.3.1

Let X be a proper scheme over k, and L a line sheaf on X. Then

a height function for L and k is a function hL,k : X(k) → R such

that there exists a proper birational k-morphism g : X ′ → X, with

X ′ projective over k, and g∗hL,k := hL,k ◦ g is a height function for

g∗L and k on X ′.

Proposition 24.3.2

If hL,k as above satisfies the given criterion for some g : X ′ → X

(again, as above), then it satisfies the given criterion for all such g.

Thus, the earlier definition is compatible with this one, as we may

take g to be the identity map if X is projective.

Towards proving this key result, we need to develop some basic notions

from algebraic geometry.
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Without separatedness of Y/S, the im-

age of Γf is only locally closed.

Definition 24.3.3: Graphs

Let S be a scheme, f : X → Y a morphism of S-schemes. Then

Γf = (idX , f)S : X → X ×S Y is called the graph of f .

Proposition 24.3.4

If Y is separated over S, then Γf as above is a closed immersion.

Proof: The following diagram is Cartesian:

X X ×S Y

Y Y ×S Y

Γf

f f×idY

∆

This follows from Vakil Ex. 1.3.S. Since ∆ is a closed immersion (as Y/S

is separated), so is Γf . �

Definition 24.3.5: Graph Closure

Let X be a scheme, U ⊆ X an open dense subset, f : U → Y a

morphism, with Y separated. Let Z ⊆ X×S Y be the closure of the

image of Γf . This is the closure of the graph of f .

Proposition 24.3.6

Z ∩ (U × Y ) is the graph of f .

Proposition 24.3.7

Let Z ′ be the image of Γf in U × Y . Then Z ′ is closed in U × Y , so

Z ∩ (U × Y ) = Z ′, since U × Y is open in X × Y .

Proposition 24.3.8

If Y is proper over S, then Z → X is surjective.

Proposition 24.3.9

Z → X ×S Y → X is a composition of proper maps (the first a

closed immersion, the second the base change of a proper map), and

is therefore itself proper, so its image is closed. Also, this image

contains U , so it must contain U = X. The image contains U since

U → U ×S Y → U is the identity map.

As before, with the convention that k is a number field or function field,

we are now ready to prove Proposition 24.3.2:



math 254: algebraic number theory 123

There was a partial proof of functorial-
ity here before, but Vojta seems to have

switched tracks and abandoned finish-

ing it. I think that the existence of σ as
described below may require the axiom

of choice.

Proof: Let gi : Xi → X be birational morphisms from projective k-schemes

for i = 1, 2, and let h : X(k) → R be a function. Let X3 be a projective

k-scheme and f : X3 → X1 a birational k-morphism. Then P 7→ h(g1(P ))

is a height function for g∗1L and k on X1 iff Q 7→ h(g1(f(Q))) is a height

function for (g1 ◦ f)∗L and k on X3. The forward direction is clear via the

functoriality of heights, and the reverse direction is left as an exercise.

Since g1 and g2 are birational maps, we have a birational map g := g−1
2 ◦g1

from X1 to X2 over X. Let Z ⊆ X1 ×k X2 be the closure of Γg; then

Z is projective over k, and the projections pi : Z → Xi are birational

morphisms, and the following diagram commutes identically:

Z X1

X2 X

p1

p2 g1

g2

To see the latter claim, note that there exists an open dense subset U ⊆ X
such that g−1

i : U → U is an isomorphism for all i, so g : X1 99K X2 is

defined on g−1
1 (U), p−1

1 (g−1
1 (U))→ g−1

1 (U) is an isomorphism, so

p2 = g ◦ p1 = g−1
2 ◦ g1 ◦ p1

so g2◦p2 = g1◦p1 over U . Since p−1
1 (g−1

1 (U)) is dense in Z, g2◦p2 = g1◦p1 on

Z by Hartshorne II Ex 4.2 (e.g, given some adjectives, morphisms agreeing

on open dense subsets agree are equal) assuming that X1, X2, and X are

reduced.

Now, using the two above claims, P 7→ h(g1(P )) is a height function for

g∗1L on X1 iff Q 7→ h(g1(p1(Q))) is a height function for p∗1g
∗
1L on Z iff

Q 7→ h(g1(p1(Q))) is a height function for p∗2g
∗
1L on Z iff P 7→ h(g2(P )) is

a height function for g∗2L on X2, from which the result follows. �

Corollary 24.3.10

If X is projective, then this definition of a height function on X

coincides with the earlier definition.

Proof: Let X ′ = X and g = idX . �

Theorem 24.3.11: Height Machine for Proper Schemes

There is a unique way to assign to each pair (X,L) of a proper

scheme over k and a line sheaf on it, a height function hL,k (up

to equivalence) such that the properties in the statement of Theo-

rem 23.1.5 (with “variety” replaced by “proper scheme”) hold.

Proof: Additivity follows from additivity on the projective case, and nor-

malization holds by the above corollary. Uniqueness up to O(1) follows
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It seems we’re redoing this whole dis-

cussion with birational replaced with

surjective to prove the above result
(more easily?). It seems to sidestep the

discussion about graphs and graph clo-
sures.

from the projective case by the below reformulation (with surjective maps

replacing birational maps). Functoriality is left as an exercise, which is

again made easier by the below reformulation in terms of surjective maps.

It remains to show existence: let X be a proper scheme over k, L a line

sheaf on X, and g : X ′ → X a surjective morphism over k, with X ′ projec-

tive over k; such a g exists by Chow’s lemma. Then g(k) : X ′(k) → X(k)

is surjective, so there exists a function σ : X(k)→ X ′(k) such that g(k) ◦σ
is the identity on X(k). Let hg∗L,k be a height function for g∗L and k on

X ′, then h : X(k) → R defined by P 7→ hg∗L,k(σ(P )) is a height function

for L and k on X (i.e, P ′ 7→ hg∗L,k(σ(g(P ′))) is a height function for g∗L
and k on X ′, the proof of which we leave as an exercise). �

Recalling Definition 24.3.1, we may in fact alter the birational assumption

on g : X ′ → X to assuming that g is surjective, satisfying the properties in

that definition. Then, the analogous result holds:

Proposition 24.3.12

If hL,k : X(k) → R satisfies the above condition for one morphism

g : X ′ → X, with X ′ projective over k, then it satisfies the condition

for all surjective g : X ′ → X over k with X ′ projective over k.

Proof: For i = 1, 2 let gi : Xi → X be surjective morphisms over k

with Xi projective over k, and let h : X(k) → R be a function. Assume

that P ′ 7→ h(g1(P ′)) is a height function for g∗1L and k on X1. We want

to show that P ′ 7→ h(g2(P ′)) is a height function for g∗2L and k on X2.

Let X3 = X1 ×X X2; this is projective over k, and the projections pi :

X3 → Xi are both surjective. Then since P ′ 7→ h(g1(P ′)) is a height

function for g∗1L, Q 7→ h(g1(p1(Q))) is a height function for p∗1g
∗
1L on X3

(by functoriality of heights on projective schemes), which in turn implies

that Q 7→ h(g2(p2(Q))) is a height function for p∗2g
∗
2L on X3 (since base

change is projective, and g1 ◦ p1 = g2 ◦ p2), which finally implies that

P ′ 7→ h(g2(P ′)) is a height function, since p2 is surjective. �

On projective schemes, the Northcott property and the property that heights

corresponding to ample line sheaves “dominate” all other heights in a pre-

cise sense both require the existence of ample line sheaves on X. and a

proper scheme with an ample line bundle is projective, so there is no ex-

tending these properties. The positivity property (that heights associated

to gbgs line sheaves are bounded below) follows immediately for proper

schemes by pulling back to a projective scheme.
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I don’t understand what happens when
Ui and Vj have empty intersection -

something to do with the fact that

nonempty opens are dense? Also,
Cartier divisors have the same data as

invertible ideal sheaves - will this relate

to the ideal class group?

Cartier Divisors

For this section, X is an integral scheme, not necessarily proper over k.

K(X) denotes the function field of an integral scheme X, and K×X is the

constant sheaf K(X)× on X, with K×(U) equal to 1 for U = ∅, and K(X)×

otherwise (since X is integral and therefore irreducible). O×X is the sheaf

given by O×X(U) = OX(U)×, where O×X ⊆ K× are sheaves of abelian groups

under multiplication.

Definition 24.4.1: Cartier Divisors

A Cartier divisor on X is a global section of K×/O×X .

Evidently, Cartier divisors form a group Γ(X,K×/O×X) under multiplica-

tion, which is usually denoted CDiv(X) and written additively. Concretely,

the data of a Cartier divisor on X can be represented by a collection

(Ui, fi) of pairs in which the Ui are an open cover of X, fi ∈ K(X)×,

and fi/fj ∈ OX(Ui ∩ Uj)× for all i, j. Two such collections (Ui, fi) and

(Vj , gj) describe the same Cartier divisor iff fi/gj ∈ OX(Ui ∩ Vj)× for all i

and j. If so, the union of these collections also describes the same Cartier

divisor.

Definition 24.4.2: Effectivity

A Cartier divisor is effective if it is described by a collection (Ui, fi)

with fi ∈ OX(Ui) for all i. If so, then the condition holds for all

collections representing the given divisor.

Definition 24.4.3

Let D be a Cartier divisor on X, (Ui, fi) a collection representing

it. Then the support of D is the set Supp(D) = {x ∈ X : ∃i s.t fi 6∈
O×X,x}.

Note that if x ∈ Ui ∩ Uj , then fi 6∈ O×X,x ⇐⇒ fj 6∈ O×X,x since fi and fj

must have the same poles and zeros on Ui∩Uj , so the support of D does not

depend on the choice of collection representing D. Intuitively, x ∈ Supp(D)

iff some fi with Ui 3 x has a zero or pole at x (or both, for different i).

As an example, consider the Cartier divisor D on X = A2
k = Spec k[t, u]

represented by the collection with one element (X, t/u). Here, Supp(D)

is the union of coordinate axes. This description gets messy when X has

singularities.
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The support of a Weil divisor
∑
Y nY Y

on X is the union ∪nY 6=0Y .

This definition is useful for actual cal-
culations, but I’d rather think of pull-
backs of Cartier divisors as pullbacks of

fractional ideal sheaves.
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Cartier Divisors

Let X be an integral scheme, D a Cartier divisor on X.

Proposition 25.1.1

Supp(D) is a proper closed subset of X.

Proof: Equivalently, X \ Supp(D) is nonempty and open. Nonemptiness

follows from the fact that the generic point ξ of X has local ring OX,ξ =

K(X), so O×X,ξ = K(X)× which always contains fi, so ξ 6∈ Supp(D). For

openness, if fi ∈ O×X,x, then fi ∈ O×X,y for all y in some open neighborhood

of x (by sheaf theory). �

Definition 25.1.2

Let f ∈ K(X)×. Then the principal Cartier divisor (f) of f is the

Cartier divisor represented by the single pair (X, f).

The group of Cartier divisor classes on X is the cokernel of the map

K(X)× → CDiv(X) given by f 7→ (f), denoted CaCl(X).

Morphisms of schemes satisfying certain properties induce pullbacks on

Cartier divisors: let ϕ : X → Y be a morphism of integral schemes, D

a Cartier divisor on Y , and assume that ϕ(X) 6⊆ Supp(D). Let ζ be the

generic point of X, y = ϕ(ζ) ∈ Y (which need not be the generic point of

Y if ϕ is not dominant). Let (Vi, fi) be a collection that represents D. To

define ϕ∗D, for all i, let Ui = ϕ−1(Vi), which contains ζ if it is nonempty.

Conversely, for such i, since y = ϕ(ζ) 6∈ Supp(D), the stalk (fi)y is in O×Y,y
so ϕ∗fi ∈ O×X,ζ = K(X)×. Also, if Ui and Uj are nonempty, ζ ∈ Ui∩Uj , and

fi/fJ ∈ OY (Vi∩Vj)×, so ϕ∗fi/ϕ
∗fj ∈ OX(Ui∩Uj)×. If Ui = ∅, take fi = 1;

these don’t matter. Then, for all j, Ui ∩ Uj = ∅, so fi/fj ∈ O(Ui ∩ Uj)×

because O(Ui∩Uj) is the zero ring. This definition does not depend on the

collection (Vi, fi).

If ϕ is dominant, then the condition ϕ(X) 6⊆ Supp(D) holds for all D,

so we get a pullback map ϕ∗ : CDiv(Y ) → CDiv(X) which is a group

homomorphism.
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I don’t really follow this intuition.

Compare this to Weil divisors, which are equipped with a natural push-

forward map as opposed to a pullback map ϕ∗ : Div(X) → Div(Y ) given

by taking a prime divisor Z ⊆ X to [K(Z) : K(ϕ(Z))]ϕ(Z) if ϕ(Z) has

codimension one in Y , and 0 otherwise. Here ϕ is required to be a finite or

generically finite proper surjective morphism.

Comparing Weil and Cartier Divisors

Let X be a noetherian, integral, separated scheme that is regular in codi-

mension one. We can define a canonical group homomorphism CDiv(X)→
Div(X) as follows: let D be a Cartier divisor on X represented by a collec-

tion (Ui, fi). For each prime divisor Y on X, pick i such that Ui ∩ Y 6= ∅,
and let nY = vY (fi) ∈ Z where vY is the valuation on the local ring OX,η,

where η is the generic point of Y (as OX,η is a DVR since it is regular and

noetherian of dimension one). This is well-defined; if Uj∩Y 6= ∅ with i 6= j,

then vY (fi) = vY (fj) ⇐⇒ vY (fi/fj) = 0 since fi/fj ∈ O×X,η and units

have valuation 0. nY is therefore independent of i, and also independent of

the choice of collection (Ui, fi) representing D by the same reasoning.

The claimed homomorphism results from extending the above map linearly,

and is easily seen to be a group homomorphism that sits within the following

commutative diagram:

CDiv(X) Div(X)

K(X)

where the maps out of K(X) are f 7→ (f). If X is a regular scheme (e.g

a nonsingular variety), then CDiv(X) → Div(X) is an isomorphism. For

information on the zoo of adjectives that control when this map is injective

or surjective, see Hartshorne.

When CDiv(X)→ Div(X) is an isomorphism, one can think of collections

(Ui, fi) representing D as having the property that fi|Ui = D|Ui for all i,

e.g, D is locally given by the principal divisors (fi) on Ui, so Supp(D−(fi))

is disjoint from Ui.

Weil Divisors

Returning to heights on k and P1(k), with k a number field or function field,

we have k = A1(k) ↪→ P1(k) given by x 7→ x 7→ [1 : x]. The schemes we will
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This result amounts to showing that
every reasonable expectation on the

homomorphism CDiv(X) → Div(X)

holds.

Recall that, for Y ⊆ X a subvari-

ety, OY,X is the local ring of equiva-
lence classes (U, f) where U ⊆ X is

open, U ∩ Y 6= ∅, and f ∈ Γ(U,OU ),

where the equivalence relation is given
by agreement on the intersection.

Here we have shown that the kernel of

the map CDiv(X) → Div(X) is zero;
gaining control on the image of this

map is more difficult, and we will not

discuss this here. See Hartshorne II,
6.11 and 6.11.2.

be discussing are (at least) integral, noetherian, separated, and regular in

codimension 1 (note that normal schemes are regular in codimension 1). We

may replace the assumptions of integrality and regularity in codimension 1

with the stronger condition of normality.

Proposition 25.3.1

Let X be a normal scheme, separated and of finite tpye over a field or

Z. Let D be a Cartier divisor on X, then D is effective iff its image

in Div(X) is effective as a Weil divisor. Moreover, the support of D

equals the support of its image in Div(X), and the map CDiv(X)→
Div(X) is injective.

Proof: For the first claim, let D be represented by a collection (Ui, fi).

If fi ∈ O(Ui) for all i (e.g D is effective as a Cartier divisor), then for

any prime divisor Y , i s.t Ui meets Y , fi ∈ OUi,Y ∩Ui , so vY (fi) ≥ 0. For

the other direction, if vY (fi) ≥ 0 for all prime divisors Y , then we may

first reduce to the case where Ui is affine for all i by taking a refinement

of our open cover. Then, for all prime divisors Y meeting Ui, vY (fi) ≥ 0,

so fi ∈ OUi,Y ∩Ui for all Y ∩ Ui of codimension one. By Hartshorne II

Proposition 6.3A or Vakil’s “algebraic Hartog’s lemma,” fi ∈ O(Ui), so D

is effective.

The second claim is left as an exercise. For the final claim, let D′ be the

image of D in Div(X). Then D′ = 0 iff both D′ and −D′ are effective,

which holds iff both D and −D are effective (by the first claim), which in

turn holds iff fi ∈ O(Ui)
× for all i, which by definition is true iff D = 0. �

Divisor-Line Sheaf correspondence

For this section, X is an integral scheme.

Definition 25.4.1

Rational Sections of Line Sheaves Let L be a line sheaf on X. A

rational section of L is an equivalence class of pairs (U, s) where U is

a nonempty open subset of X and s ∈ Γ(U,L), under the equivalence

relation (U, s) ∼ (V, t) if s|U∩V = t|U∩V .

Equivalently, one may think of a rational section s as an element of the

stalk Lξ where ξ is the (unique, since X is integral) generic point of X.

More compactly, we may write s ∈ Γ(X,L⊗OX K(X)), where K(X) is the

constant sheaf of rational functions on X.

With L as above, s a nonzero rational section of L, let Ui be an open cover

such that L|Ui ∼= OUi for all i. Pick isomorphism ϕi : L|Ui → OUi ; we have
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If L and M are line sheaves, L a sub-

sheaf ofM, then divL(s) 6= divM(s) in
general.

the following commutative diagram:

O(Ui ∩ Uj)

LUi∩Uj O(Ui ∩ Uj)

ψij
ϕi|Ui∩Uj

ϕj |Ui∩Uj

Here ψij is an isomorphism O(Ui ∩ Uj) → O(Ui ∩ Uj) which must be

multiplication by some fij ∈ O(Ui∩Uj)×. For all i, let fi = ϕi(s|Ui). Then

fi ∈ K(Ui)
× = K(X)×, and fj = fijfi, so fi/fj = f−1

ij ∈ O(Ui ∩ Uj)× for

all i, j, so the collection of (Ui, fi) represents a Cartier divisor on X which

is independent of the choice of open cover and isomorphisms ϕi (this is an

exercise). We denote this divisor by (s), or div(s), or divL(s).

Example 25.4.2

If L = OX , then the rational sections of L are the elements of

K(X), and for all f ∈ K(X)×, div(f) is equal to the principal

Cartier divisor (f).

Some remarks - if X, L, s, and (Ui, fi) are as in the above construction, then

(s)|Ui = (fi)|Ui = divOX (s/s0) for any generator s0 of L|Ui (e.g ϕ−1
i (1)).

Moreover, if x ∈ X disjoint from the support of (s) iff s is a regular nonzero

section of L in an open neighborhood of X iff sx generates the stalk Lx. (s)

is effective as a Cartier divisor iff s ∈ Γ(X,L). The Weil divisor
∑
Y nY Y

obtained from (s) is characterized by nY = vY (s/s0) for any local generator

s0 of L in an open neighborhood of the generic point of Y . If s and t are

nonzero rational sections of line sheaves L and M, then s⊗ t is a nonzero

rational section of L⊗M, and (s⊗ t) = (s) + (t). Finally, if s is a nonzero

rational section of L, then s−1 is a nonzero rational section of L×, and

(s−1) = −(s).

Definition 25.4.3: Pullbacks

Let ϕ : X → Y be a morphism of integral schemes, L a line sheaf

on Y , s a nonzero rational section of L. If there exists a nonempty

open subset V of Y such that s is represented by a regular section

sV ∈ L(V ), and ϕ∗(sV ) ∈ ϕ∗L(ϕ−1(V )) is nonzero, then ϕ−1(V ) 6=
∅, and we define ϕ∗s to be the nonzero rational section of ϕ∗L on

X represented by ϕ∗sV ∈ ϕ∗L(ϕ−1(V )).

Definition 25.4.4

Let D be a Cartier divisor on an integral scheme X, represented by

a collection (Ui, fi). Then OX(D) (sometimes written L(D)) is the

OX -submodule of KX (the constant sheaf K(X) on X) such that

OX(D)|Ui is the OUi-submodule of K|Ui generated by f−1
i for all i.
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How I’m used to thinking of this: the
subsheaf of KX whose sections f have

poles contained in the locus of zeros of

D (as a Weil divisor); as a mnemonic
(possibly a correct definition, I can’t re-

member), f such that (f) + D ≥ 0, i.e

(f) +D is effective.

For the proof, see Hartshorne II, Prop

6.13.

The proof is left as an exercise.

It is called the line sheaf associated to D.

This is a well-defined construction, since f−1
i /f−1

j ∈ O(Ui ∩ Uj)× for all

i, j, and is independent of the choice of collection.

Proposition 25.4.5

Let X be an integral scheme. Then the sequence

K(X)×
f 7→(f)−−−−→ CDiv(X)

D 7→O(D)−−−−−−→ Pic(X)→ 0

is exact, e.g CaCl(X)→ Pic(X) is an isomorphism.

Definition 25.4.6

Let X be an integral scheme, D a Cartier divisor on X. Then

1 ∈ KX determines a nonzero rational section 1D of O(D), called

the canonical rational section of O(D).

Note that (1D) = D, since if D is represented by (Ui, fi), then O(D)|Ui
∼−→

OUi via s 7→ s × fi, so 1D 7→ fi for all i, so (1D) is represented by the

collection (Ui, fi). Also note that D is effective iff 1D is a global section of

O(D); this follows from the requirement that (1D) +D ≥ 0 globally.

Proposition 25.4.7

Let X be an integral scheme, L a line sheaf on Y , s a nonzero

rational section of L, D = (s). Then O(D) ∼= L.

The punch line of this discussion is that we can redo our height machine

discussion entirely in terms of divisors: let X be a proper (equivalently, for a

variety, complete) variety over a number field or function field k, D a Cartier

divisor on X. Then, a height function for D and k is a height function for

O(D) and k. The results of the height machine (Theorem 23.1.5), now

given in terms of Cartier divisors, hold with the additional condition that

hD1,k = hD2,k +O(1) if D1 ∼ D2.

Background for Weil Functions

Let k be a number field, and recall that hk(x) =
∑
ν∈Mk

log max(1, ‖x‖ν)

for x ∈ k, which extends to P ∈ P1(k) as

hk(P ) =
∑
ν∈Mk

log max(‖x0‖ν , ‖x1‖ν) =
∑
ν∈Mk

− log
‖x0‖ν

max(‖x0‖ν , ‖x1‖ν)

where the latter equation is valid on P1(k) \ {[0 : 1]}. In the first and

third equations for hk, we have well-defined components (i.e terms in the
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The fact that Qp is not complete shows

that completion and algebraic closure
do not generally commute. The com-

pletion of an algebraically closed field
remains algebraically closed.

sum) for each ν ∈ Mk; in the second equation, we don’t (because of the

scaling property of Pn). In going from the second to the third equation,

we needed to eliminate the point ∞ = [0 : 1]; this corresponds to working

relative to the divisor D = (∞). We’ll see that the summands in the final

form of hk are Weil functions for D, and that they sum to give the height

hD,k(P ) (note that O(D) ∼= O(1), so hD,k = hO(1),k + O(1) = hk + O(1)

by normalization).

Definition 25.5.1

Let k be a number field or function field. For all ν ∈ Mk, Cν is

defined to be the completion of kν which is the algebraic closure of

kν (itself the completion of k with respect to ν).

Example 25.5.2

If ν is archimedean, then kν is R or C, kν = C, so Cν = C.

Example 25.5.3

If k = Q, ν = p, then kν = Qp, kν = Qp, which is not complete, but

its completion Cν is algebraically closed.
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Unclear to me why there is a unique
point Pν corresponding to P .
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Weil Functions

As before, k is a number field or a function field, and X is a variety over k.

Recall that Cν is the completion of kν at ν ∈Mk. Let X be a variety over

k. Then X(M) :=
∐
ν∈Mk

X(Cν), where M is used to refer to Mk, and

a Weil function for a Cartier divisor D on X (relative to k) is a function

λD : (X \ Supp(D))(M) → R (satisfying certain conditions, which we will

specify below). The restriction λD|(X\Supp(D))(Cν) will be denoted λD,ν .

We want to show that hλD,k : (X \ Supp(D))(k) → R given by P 7→∑
ν∈Mk

λD,ν(Pν) is equal to hD,k|(X\Supp(D))(k) + O(1), where Pν is the

point in X(Cν) corresponding to P .

We know that heights only carry meaningful arithmetic information up to

O(1) (in order to have functoriality); similarly, Weil functions will only be

meaningful up to some variation, but not O(1), as some will diverge. Recall

that the components of the sums

hk(x) =
∑
ν∈Mk

log max(1, ‖x‖ν) =
∑
ν∈Mk

− log
‖x0‖ν

max(‖x0‖ν , ‖x1‖ν)

are Weil functions for D = (∞). Let a, b ∈ k with a 6= 0. Then x 7→ ax+ b

is an automorphism of A1
k, which extends to an automorphism of P1

k taking

[x0 : x1] to [x0 : bx0 + ax1]. This automorphism (call it ϕ) fixes the point

∞ = [0 : 1], so it fixes the divisor D = (∞), so hk(ϕ(P )) = hk(P ) + O(1)

for all P ∈ P1
k.

We want to understand what ϕ does to the Weil function− log ‖x0‖ν
max(‖x0‖ν ,‖x1‖ν) .

Restricting to A1 (since the point ∞ is excluded from our discussion), we

have that λD,ν(x) = log max(1, ‖x‖ν) for all x ∈ k, and

λD,ν(ϕ(x)) = log max(1, ‖ax+ b‖ν) ≤ log max(1, ‖x‖ν)+

log max(1, ‖a‖ν) + log max(1, ‖b‖ν) +Nν log 2

We may similarly expand λD,ν(ϕ−1(x)), and this indicates that we should

allow Weil functions to vary up to Mk-constants.

As we’ll want to use compactness-type arguments going forward, note that

Cν is not locally compact unless ν is archimedean. This follows form the
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These facts about the ν-topology are

stated probably out of order.

Why may we assume that X is inte-

gral and affine? Don’t understand the
dimension argument at the end of this

proof.

It’s not at all clear why this list of prop-
erties is what we want, but I assume it

will turn out to be the right set of as-
sumptions to make Weil functions work
how we want them to.

fact that kν is infinite, so {x ∈ Cν : ‖x‖ν ≤ 1} has an open cover {{x ∈
Cν : ‖x− y‖ν < 1} : y ∈ Cν , ‖y‖ν ≤ 1} with no finite subcover.

Definition 26.1.1: ν-topology

Let ν ∈ Mk. The ν-topology on X(Cν) is the coarsest topology

such that for all Zariski-open U ⊆ X U(Cν) is open, and, for all

f ∈ OX(U), the function U(Cν)→ Cν induced by f is continuous.

Some facts: of ν is archimedean, then the ν-topology is the classical topol-

ogy on the complex space X(C). If Y is a subscheme of X (open or closed),

then the relative topology on Y (Cν) induced by the ν-topology on X(Cν)

is the same as the ν-topology on Y (Cν). All morphisms X → Y of va-

rieties over k induce continuous maps X(Cν) → Y (Cν) in the ν-topology

for all ν. For any open affine U = SpecA in X and any isomorphism

A ∼= k[x1, · · · , xn]/I over k, the ν-topology on U(Cν) is the same as the

topology induced by the product topology on An(Cν). The ν-topology on

An(Cν) is the same as the product topology on Cnν .

Proposition 26.1.2

If U is a dense open subset of X (in the Zariski topology), then

U(Cν) is a dense open subset of X(Cν) (in the ν-topology).

Proof: We may assume that X is integral and affine, X = SpecA. By

Noether normalization, there exist y1, · · · , yd ∈ A such that d = dimA =

dimX, and A is finite over k[y1, · · · , yd] ⊆ A. This gives a finite surjection

ϕ : X → Adk (induced by the inclusion). This morphism is proper, so

ϕ(X \ U) is closed in Adk, and ϕ((X \ U) ×k Cν) is closed in AdCν (in the

Zariski topology, and therefore also in the ν-topology). This is equal to

ϕ(X \ U) ×k Cν , so, for dimension reasons, ϕ(X \ U)(Cν) cannot contain

an open ball in Cdν , so its complement is dense in the ν-topology. �

As we have noted above, Cν is not locally compact for ν non-archimedean;

in fact, for such ν, Cν is totally disconnected. Therefore, continuity is not

actually a very useful property on X(Cν). We want some other property

P of functions X(Cν)→ R satisfying the following criteria:

1. All functions X(Cν)→ R having property P are bounded

2. − log ‖f‖ν has P for all f ∈ K(X), all X

3. P is closed under addition, subtraction, multiplication, and composition

of functions

The topology on X(M) is the disjoint union topology of the ν-topologies on

X(Cν) (e.g U ⊆ X(M) is open iff U ∩X(Cν) is open in the ν-topology for

all ν). For P ∈ X(M), let ν(P ) denote the unique ν ∈ Mk for which P ∈
X(Cν), and let ‖f(P )‖ denote ‖f(P )‖ν(P ) for all P ∈ X(M), f ∈ K(X).
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At this point, we are now considering k

to be a number field, a function field (in
one variable as always), or a completed

field Eν where E is a number field or

function field. For fields of this type,
MEν = {ν}, and MEν -constants are

just constants.

Definition 26.1.3

Let X be an affine scheme of finite type over k, x1, · · · , xn a system

of generators for the affine ring O(X) over k, γ an Mk-constant.

Then set

B(X,x1, · · · , xn, γ) = {P ∈ X(M) : log ‖xi(P )‖ ≤ γν(P ) for all i}

For all ν ∈ M∞k , B(X,x1, · · · , xn, γ) ∩ X(Cν) is a bounded subset of Cn,

and all bounded subsets of Cn are contained in such intersections for some

γ (fixing the xi). Up to containment, this captures all bounded subsets of

X(Cν), all ν ∈M∞k .

Definition 26.1.4

Let U be an open affine subset ofX (not necessarily affine), x1, · · · , xn
a system of generators for O(U) over k. A subset E ⊆ X(M)

is said to be affine M -bounded with respect to U and the xi if

E ⊆ B(U, x1, · · · , xn, γ) for some Mk-constant γ. E is affine M -

bounded with respect to U if there exist xi generating O(U) s.t the

above criterion is satisfied.

Lemma 26.1.5

Let V ⊆ U be open affine subsets of X, x1, · · · , xn and y1, · · · , ym
systems of generators for O(U) and O(V ) respectively, over k. Then

any affine M -bounded set with respect to V and the yi is also M -

bounded w.r.t U and the xi.

Proof: Since V ⊆ U , O(U) ⊆ O(V ), so there exist polynomials f1, · · · , fn ∈
k[Y1, · · · , Ym] s.t xi = fi(y1, · · · , ym) for all i. If E is affine M -bounded

w.r.t V and the yi, E ⊆ B(V, y1, · · · , ym, γ) for some Mk-constant γ. There-

fore, ‖yj(P )‖ ≤ eγν(P ) for all P ∈ E, all j, so that

‖xi(P )‖ = ‖fi(y1(P ), · · · , ym(P ))‖ ≤ Ciedeg(fi)γν(P ) ≤ edmax(0,γν(P ))+γ
′
ν(P )

where Ci = (‖max coefficient of fi‖ν(P ))·(# of terms of fi)
Nν(P ) , d = maxi deg fi,

and γ′ν = log maxi Ci. Therefore, E ⊆ B(U, x1, · · · , xn, dmax(0, γ) + γ′).

�

Note that this lemma implies that the condition of being affine M -bounded

with respect to U is independent of the choice of a finite generating set for

O(U) over k (by taking V = U in the above argument).

For intuition, when k = C, a subset E of X(C) is affine M -bounded with

respect to an open affine U ⊆ X iff the closure of E in U(C) is compact.
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This definition borders on meaningless-
ness for me. Hopefully this has some

reasonable motivation that we’ll dis-

cuss.

This proof is only a sketch, and is com-

pletely meaningless to me. I don’t
know why being M -bounded is a mean-

ingful adjective. Detailed proofs are in

the handouts on Vojta’s website.

Definition 26.1.6

Let E ⊆ X(M). Given open affine subsets U1, · · · , Un of X, we

say that E is M -bounded with respect to U1, · · · , Un if there is a

decomposition E = E1∪· · ·∪En where Ei is affine M -bounded with

respect to Ui for all i. Fixing E, if there exist such Ui as described,

then we say that E is M -bounded (without qualification).

Example 26.1.7

Let X = Pnk . Then X(M) is M -bounded.

Proof: Let Ui = D+(xi) for i = 0, · · · , n be the standard open affine cover

of Pnk . Let P = [a0 : · · · : an] ∈ X(M), and pick j ∈ {0, · · · , n} such that

‖aj‖ν(P ) = max(‖a0‖ν(P ), · · · , ‖an‖ν(P )). Then ‖(xi/xj)(P )‖ ≤ 1 for all i,

so P ∈ B(Uj , x0/xj , · · · , xn/xj , 0) and

X(M) ⊆
⋃
j=0n

B(Uj , x0/xj , · · · , xn/xj , 0)

so X(M) is M -bounded. �

Example 26.1.8

Let Y be a variety over k and X = PnY = Pnk ×k Y for some n ∈ N.

Let f : X → Y be the canonical projection. If E ⊆ Y (M) is M -

bounded, then so is f−1(E) as a subset of X(M).

Proof: It suffices to show that if E′ is an affine M -bounded subset of Y

with respect to some open affine U ⊆ Y , then f−1(E′) is an M -bounded

subset of X(M). This follows as above (using the standard open affine

cover), and the details are omitted here. �

Theorem 26.1.9

Let Ui and Vj be two open affine covers of X. Then a subset E of

X(M) is M -bounded w.r.t the Ui iff it is M -bounded w.r.t the Vj .

Proof: In the case that X is affine, n = 1, U1 = X, and the Vi are principal

open affines D(f1), · · · , D(fm) with fi ∈ O(X). The proof in this case is

a homework exercise. If X is affine, n = 1, U1 = X and V1, · · · , Vm are

arbitrary open affines, then if E is affine M -bounded w.r.t the Vi, then it

is affine M -bounded with respect to X by a previous lemma. In the other

direction, we may reduce to the first case by covering each Vj with finitely

many open affines (since the D(fi) form a base for the Zariski topology on

X).

In the general case, we may reduce to the second case (where the Vi are

general) by noting that Ui ∩ Vj is affine for all i, j (since X is separated),
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Again, a sketch of a proof here.

f(E) is an abuse of notation since f is

technically only defined on X; however,
it has an obvious interpretation as the

union of ν ∈ Mk of the base changes.

In particular

f(E) := ∪ν∈Mkfν(E ∩X(Cν))

so Ui ∩ V1, · · · , Ui ∩ Vm is an open affine cover of Ui for all i, and similarly

U1 ∩ Vj , · · · , Un ∩ Vj is an open affine cover of Vj for all j. �

Corollary 26.1.10

To verify that E ⊆ X(M) is M -bounded, it suffices to check the

condition for any open affine cover of X.

Corollary 26.1.11

Suppose X is affine. Then E ⊆ X(M) is M -bounded iff it is M -

bounded w.r.t X.

Proposition 26.1.12

Let f : X → Y be a morphism of k-varieties. If E ⊆ X(M) is

M -bounded, then so is its image f(E) ⊆ Y (M).

Proof: Reduce to the case where Y and X are both affine, say X =

SpecA, Y = SpecB, f corresponding to ϕ : B → A. Let x1, · · · , xn
and y1, · · · , ym be systems of generators for A and B respectively, as k-

algebras. Assume that n ≥ m and xi = ϕ(yi) for all i ≤ m. Then E ⊆
B(X,x1, · · · , xn, γ) =⇒ f(E) ⊆ B(Y, y1, · · · , ym, γ). �

We will state, without a full proof, some other facts about M -boundedness:

if f : X → Y is proper and E ⊆ Y (M) is M -bounded, then so is f−1(E)

(when f is projective, we have already shown in a previous example that

this holds over open affines of Y , hence over Y ; in general, we use Chow’s

lemma and the above proposition). M -boundedness is preserved by subsets

(hence by closed immersions), e.g, if E is M -bounded, then so is any subset

of E. If Y ⊆ X is a closed subvariety and E ⊆ Y (M) is M -bounded as

a subset of X(M), then it is also M -bounded as a subset of Y (M). The

same holds for open immersions. M -boundedness is preserved under finite

unions.

Let R denote the extended real numbers with ±∞ adjoined, along with the

obvious ordering.

Definition 26.1.13

Let f : X(M) → R be a function. We say that f is locally M -

bounded from below if for all M -bounded subsets E of X(M) there

is an Mk-constant γ (valued in R, not R) such that f(P ) ≥ γν(P ) for

all P ∈ E. Locally M -bounded from above and locally M -bounded

are defined similarly, mutatis mutandis.
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Incredibly contrived definition. No idea

why it’s useful.

Proposition 26.1.14

Let f ∈ O(X). Then the function − log ‖f‖ : X(M) → R (with

the convention − log 0 = +∞) is locally M -bounded from below. If

f ∈ O(X)×, then − log ‖f‖ is locally M -bounded.

Proof: Let E ⊆ X(M) be an M -bounded set, U1, · · · , Un an affine open

cover of X, and E = E1 ∪ · · · ∪ En where Ei is affine M -bounded w.r.t

Ui. We may therefore reduce to the affine case X = Ui. Then E ⊆
B(X,x1, · · · , xn, γ) for some xi generating O(X) as a k-algebra and some

Mk-constant γ. We may assume that xm = f , so (by definition of B(· · · ))
− log ‖f(P )‖ ≥ −γν(P ) for all P ∈ E. With the first assertion shown, the

second assertion by repeating this argument with 1
f in the place of f . �

We are finally ready to define Weil functions:

Definition 26.1.15: Weil Functions

Let X be a variety over k. A Weil function on X is a pair (D,λ),

where D is a Cartier divisor on X and λ : (X \ SuppD)(M) → R
is a function that satisfies the following condition: there exists a

collection (Ui, fi) representing D and continuous locally M -bounded

functions αi : Ui(M) → R such that λ(P ) = − log ‖fi(P )‖ + αi(P )

for all P ∈ (Ui \ SuppD)(M).

We will usually refer to a Weil function (D,λ) by its component λ, usually

written λD, and we will write λD,ν to denote λD|(X\SuppD)(Cν).

The intuition we should have for Weil functions is that λD,ν grows like

− log ‖fi‖ν near Supp(D) on Ui(Cν) for all i and ν, but with uniformity as

ν varies (which is hard to describe).

Example 26.1.16

Let f ∈ K(X)×. Then the function − log ‖f‖ defines a Weil function

for the principal divisor (f). It is called the principal Weil function

for f .
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Still don’t know why I am supposed to

care about Weil functions. This has
just been an endless chain of absurd ad-

jectives and properties.

To show that β is locally M -bounded,
note that β|Ui(M) is locally M -

bounded for all i, and assume that all
Ui are affine. Pass to a finite subcover

of X; if E ⊆ X(M) is M -bounded, then

it is M -bounded w.r.t the Ui, and the
rest is clear.
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More on Weil Functions

As before, k is a number field, a function field, or the completion of a

number field or function field. Recall Definition 26.1.15: we will primarily

be discussing this definition today. Note that we usually restrict to X

complete or projective, for certain technical reasons. Let L be a finite

extension of k; if k is of the third type (the completion of a number field

or function field), then L is also of this type. For all ω ∈ ML and ν ∈ Mk

with ω|ν, we have Cω ∼= Cν canonically (possibly with different norms),

so we will identify XL(Cω) with X(Cν) in the obvious way, and define

λD,ω = [Lω : kν ]λD,ν for all Weil functions λD, which produces a Weil

function over L.

Proposition 27.1.1

Let (D,λ) be a Weil function on X, U an open subset of X, f ∈
K(X)×. Assume that D|U = (f)|U ; then the function λ + log ‖f‖
on (U \ Supp(D))(M) extends uniquely to a continuous locally M -

bounded function β : U(M)→ R.

Proof: Let (Ui, fi) and αi represent (D,λ). For each i, fi/f ∈ O(U ∩Ui)×,

so − log ‖fi/f‖ is continuous and locally M -bounded on (U ∩Ui)(M), as is

αi − log ‖fi/f‖. Also, for all P in ((U ∩ Ui) \ Supp(D))(M),

αi(P )−log ‖fi(P )/f(P )‖ = αi(P )−log ‖fi(P )‖+log ‖f(P )‖ = λ(P )+log ‖f(P )‖

so λ + log ‖f‖ extends to a continuous locally M -bounded function βi on

(U ∩Ui)(M). This extension is unique since (U ∩Ui) \ Supp(D) is Zariski-

dense in U ∩Ui, so ((U ∩Ui) \ Supp(D))(M) is dense in (U ∩Ui)(M) by a

previous result. The βi are compatible on the intersections of their domains,

so they combine to give a unique continuous function β : U(M)→ R which

is locally M -bounded as desired. �

Corollary 27.1.2

If (D,λ) is a Weil function, then it satisfies the condition in the

definition of Weil functions for all collections (Ui, fi) representing D

(e.g, the property of being a Weil function does not depend on any

specific open cover representing D).
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The proof is left as an exercise, and

is similar to the proof of the previous
proposition.

Properties of Weil Functions

Weil functions are additive, in the sense that if (D1, λ1) and (D2, λ2) are

Weil functions on X, there is a natural way in which (D1 + D2, λ1 + λ2)

is also a Weil function on X. There is a slight problem here, in that the

domain of λ1 + λ2 is (X \ (Supp(D1) ∪ Supp(D2)))(M) which may be a

proper subset of (X \ Supp(D1 + D2))(M). For example, if X is regular,

some prime divisors in D1 may cancel in D1 +D2, when regarded as Weil

divisors. To remedy this situation, we have the following lemma:

Lemma 27.2.1

Let U ⊆ X be a dense open subset, λ0 : U(M)→ R a function, D a

Cartier divisor on X. Assume that U ∩Supp(D) = ∅ and that there

exists a collection (Ui, fi) representing D such that the function

(λ0 + log ‖fi‖) : (U ∩ Ui)(M) → R extends to a continuous locally

M -bounded function αi : Ui(M) → R. Then λ0 extends uniquely

to a function λ : (X \ Supp(D))(M)→ R such that (D,λ) is a Weil

function.

Proposition 27.2.2

Let (D1, λ1) and (D2, λ2) be Weil functions on X. Then λ1 + λ2 :

(X\(Supp(D1)∪Supp(D2))(M)→ R extends uniquely to a function

λ : (X \ Supp(D1 +D2))(M)→ R such that (D1 +D2, λ) is a Weil

function.

This follows directly from the previous lemma.

Weil functions are functorial, in the sense that if f : X → Y is a morphism

of varieties, (D,λ) a Weil function on Y , with f(X) 6⊆ Supp(D), then

(f∗D,λ ◦ f) extends uniquely to a Weil function on X.

Proof: We apply the above lemma, and use the fact that if V ⊆ Y is

open, and α : V (M) → R is continuous and locally M -bounded, then

α ◦ f : f−1(V )(M) → R is also continuous and locally M -bounded, which

in turn uses the fact that if E is an M -bounded subset of f−1(V )(M), then

f(E) is an M -bounded subset of V (M) (via some abuse of notation). �

Weil functions additionally satisfy the criterion of normalization, meaning

that on X = Pnk , with n > 0, D = divO(1)(x0), with λ : (D+(x0))(M) →
R given by − log ‖x0‖

max(‖x0‖,··· ,‖xn‖ (which is independent of the choice of

homogeneous coordinates [x0 : · · · : xn]), we have that (D,λ) is a Weil

function. To see this, let (Ui, fi) be given by Ui = D+(xi) and fi = x0

xi

representing D. We want to show that

λ([x0 : · · · : xn]) + log

∥∥∥∥x0

xi

∥∥∥∥ = max
j
− log

∥∥∥∥xixj
∥∥∥∥
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Here, R refers to R ∪ {±∞}.

The proof will be given as a homework
exercise.

In this corollary, Mk-constants are re-
garded as functions on X(M) where

γ(P ) = γν for all P ∈ X(Cν).

is continuous and locally M -bounded on Ui(M) for all i. Here, each func-

tion − log
∥∥∥ xixj ∥∥∥ is continuous and locally M -bounded from above on Ui(M)

(regarded as a function from Ui(M) to R∪{−∞}), and locally M -bounded

on (Ui ∩ Uj)(M). We want the following lemma:

Lemma 27.2.3

Let V1, · · · , Vm be an open cover of a variety Y over k, and let

f1, · · · , fm : Y (M)→ R be functions such that fj is locally bounded

from above for all j, and fj |Vj(M) is locally bounded. Let f =

maxi fi, then f is locally M -bounded.

Applying this lemma with Y = Ui for all i, the normalization criterion

follows.

Finally, note that ((f),− log ‖f‖) is a Weil function on X for all f ∈
K(X)×, so Weil functions in fact satisfy all of the properties of our height

functions from the height machine.

Proposition 27.2.4: Linear Equivalence

Let (D1, λ1) and (D2, λ2) be Weil functions on X, with D1 ∼ D2,

say D1 − D2 = (f) for some f ∈ K(X)×. Then λ1 − λ2 + log ‖f‖
extends uniquely to a continuous locally M -bounded function on

X(M).

Proof: By linearity, λ1 − λ2 + log ‖f‖ extends uniquely to a function λ :

X(M) → R such that (0, λ) is a Weil function. The Cartier divisor 0 is

represented by the single element collection (X, 1), so by the definition of

Weil functions, λ is continuous and locally M -bounded on X(M). �

Corollary 27.2.5

IfX is a complete variety (soX → Spec k is proper), (D,λ1), (D,λ2)

Weil functions on X, then there exist Mk-constants γ and γ′ such

that −γ′ ≤ λ1 − λ2 ≤ γ on (X \ SuppD)(M).

Proof: By the linear equivalence property with f = 1, λ1−λ2 extends to a

continuous locally M -bounded function λ : X(M)→ R. Since X → Spec k

is proper, and (Spec k)(M) is affine M -bounded (since it is contained in

B(Spec k, 1, 0)), X(M) is M -bounded, so we get γ and γ′ straight from the

definition of the locally M -bounded function λ. �

Definition 27.2.6

Let λ : X(M)→ R be a function. We say that λ = OMk
(1) if there

exist Mk-constants γ, γ′ such that

−γ′ν(P ) ≤ λ(P ) ≤ γν(P )
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Vojta says something about how D was
unnecessary for this discussion, and we

could’ve had P ∈ X(k) or X(L) respec-
tively. I don’t understand where we get

a morphism Spec k → X.

We have been doing variations of this
definition for forty pages.

for all P ∈ X(M), e.g, −γ′ ≤ λ ≤ γ. We say that λ ≤ OMk
(1) if

λ ≤ γ for some Mk-constant γ, and similarly define the condition

λ ≥ OMk
(1).

In this language, the above corollary states that λ2 − λ1 = OMk
(1).

Weil Functions and Heights

Definition 27.3.1

Let (D,λ) be a Weil function on X (usually complete), P ∈ (X \
SuppD)(k), ν ∈ Mk. Then the point Pν ∈ (X \ SuppD)(Cν) is

the point given by the composite morphism SpecCν → Spec k →
X \ SuppD over k.

Moreover, if L is a finite extension of k, P ∈ (X \ SuppD)(L),

ω ∈ ML, then the composite function SpecCω → SpecL → X \
SuppD over k defines a point Pω ∈ (X \SuppD)(Cω), and we write

λω(P ) = λ(Pω).

Definition 27.3.2

Let k be a number field or a function field, and let (D,λ) be a

Weil function on X. Let P ∈ (X \ SuppD)(k), and choose a finite

extension L of k such that P ∈ (X \ SuppD)(L). Then we define

h◦λ,k(P ) =
1

[L : k]

∑
ω∈ML

λω(P )

If L′ is a finite extension of L, ω ∈ ML, then λω′ = [L′ω′ , Lω]λω for

all ω′ ∈ML′ lying over ω, so∑
ω′∈M

L′
ω′|ω

λω′(P ) =
∑

ω′∈M
L′

ω′|ω

[L′ω′ : Lω]λω(P ) = [L′ : L]λω(P )

so the value h◦λ,k(P ) does not depend on the choice of L.

If (D,λ1) and (D,λ2) are Weil functions (with the same divisor D), and X

is complete, then −γ′ ≤ λ1 − λ2 ≤ γ for some Mk-constants γ and γ′, and

therefore −|γ′| ≤ h◦λ1,k
− h◦λ2,k

≤ |γ| by summing over these inequalities.

Therefore, h◦λ1,k
= h◦λ2,k

+O(1).
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The proof boils down to applying the

product formula on f(P ).

Lemma 27.3.3

Let k (a number or function field), X, and (D,λ) be as above, f ∈
K(X)×. Let (D+(f), λ′) be the Weil function uniquely determined

by λ′ = λ − log ‖f‖. Then h◦λ,k(P ) = h◦λ′,k(P ) for all P ∈ (X \
(SuppD ∪ Supp(f))(k) (with no O(1) term).

Definition 27.3.4

Let k, X, and (D,λ) be as above, P ∈ X(k), f ∈ K(X)× s.t P 6∈
Supp(D+(f)). Let (D+(f), λ′) be the Weil function corresponding

to the sum (D,λ) + ((f),− log ‖f‖) on X and define hλ,k(P ) =

h◦λ′,k(P ). This is independent of the choice of f by the above lemma,

and produces a function hλ,k : X(k)→ R.

Proposition 27.3.5: Normalization

Let X = Pnk , D = (x0), λ(P ) = − log ‖x0‖
max(‖x0‖,··· ,‖xn‖) for all P ∈

(X \ SuppD)(M). Then hλ,k = hk.

Proposition 27.3.6: Linear Equivalence

If (D1, λ1) and (D2, λ2) are Weil functions on X, D1 ∼ D2, then

hλ1,k = hλ2,k + O(1). Moreover, if λ2 = λ1 − log ‖f‖ where D2 =

D1 + (f) (f ∈ K(X)×), then hλ1,k = hλ2,k with no O(1).

Proof: The first assertion follows from the fact that λ1 = λ2 + OMk
(1)

(which we proved earlier). The second assertion follows from the above

lemma. �

The proofs of functoriality and additivity (the remaining properties from

the height machine) are left as exercises (these results do not have O(1)

terms). Next, we want to show that Weil functions relative to a given

divisor exist.

Theorem 27.3.7: Existence

Let X be a projective variety over k and let D be a Cartier divisor

on X. Then there is a function λ : (X \SuppD)(M)→ R such that

(D,λ) is a Weil function.

Proof: By a previous lemma, we may write O(D) ∼=M⊗N∨ whereM and

N are gbgs line sheaves on X. Let s = (s0, · · · , sn) and t = (t0, · · · , tm) be

generating systems of global sections for M and N respectively. Assume

that s0 and t0 are not identically zero, and let Φs = [s0 : · · · : sn] : X →
Pnk . Then Φ∗sO(1) ∼= M and Φs(x) 6⊆ Supp(x0), so the Weil function

− log ‖x0‖
max(‖x0‖,··· ,‖xn‖) on Pnk pulls back to give a Weil function (D1, λ1)

on X, where D1 = (s0). Similarly, we may obtain (D2, λ2) on X with
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The proof is in a handout.

t, where D2 = (t0). Since O(D) ∼= M⊗ N∨, we have D ∼ D1 − D2 so

D = D1 −D2 + (f) for some f ∈ K(X)×. By additivity of Weil functions,

λ1−λ2− log ‖f‖ extends to a function λ : (X \SuppD)(M)→ R such that

(D,λ) is a Weil function on X as desired. �

Corollary 27.3.8

By the height machine for divisors, if (D,λ) is a Weil function on

X, then hλ,k is a height function for D, for all projective varieties

X over k.

Since

− log
‖x0‖

max(‖x0‖, · · · , ‖xn‖)
= max

{
− log

∥∥∥∥x0

xi

∥∥∥∥ : 0 ≤ i ≤ n
}

we have that

λ1 = max

{
− log

∥∥∥∥s0

si

∥∥∥∥ : 0 ≤ i ≤ n
}

and λ2 = max

{
− log

∥∥∥∥ t0tj
∥∥∥∥ : 0 ≤ i ≤ m

}
in the above proof; this combines to give

λ = min
j

max
i

(
− log

∥∥∥∥f s0

si

tj
t0

∥∥∥∥)
Since D = D − 1 − D − 2 + (f) = (s0) − (t0) + (f) =

(
fs0
t0

)
, we can let

1D = fs0
t0

(with (1D) = D), so that

λ = min
j

max
i

(
− log

∥∥∥∥1Dtj
si

∥∥∥∥)

Theorem 27.3.9: min-max

Let D be a Cartier divisor on a projective variety X over k. Then

there exist effective Cartier divisors X1, · · · , Xn, Y1, · · · , Ym on X

such that ∩i SuppXi = ∩j SuppYj = ∅ and D + Xi ∼ Yj for

all i, j. Moreover, for any such collection of Xi and Yj , fij ∈
K(X)× such that (fij) = D + Xi − Yj , then the function λ =

mini maxj(− log ‖fij‖) extends to a function λ : (X\SuppD)(M)→
R such that (D,λ) is a Weil function on X.

Theorem 27.3.10

Let X be a variety over k, D, and D1, · · · , Dn Cartier divisors on X.

Assume that Di −D is effective for all i, and ∩i Supp(Di −D) = ∅.
Let λ1, · · · , λn be Weil functions for D1, · · · , Dn respectively. Then

mini λi is a Weil function for D.
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Not really a definition but my own

shorthand: a Vojta field is a number
field, function field, or a completion of a

number field or function field at a place.

This also shows why hL,k(P ) ≥ −O(1)
for all P ∈ X(k) outside of the base lo-

cus of L, which is the positivity prop-
erty of heights.
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Even More on Weil Functions

Proposition 28.1.1

Let X be a proper variety over k a Vojta field, (D,λ) a Weil function

on X. Assume that the (Cartier) divisor D is effective. Then λ ≥
−OMk

(1).

Proof: Let (Ui, fi) represent D, and assume that the set I is finite. For all

i, we have λ(P ) = − log ‖fi(P )‖+ αi(P ) with αi : Ui(M)→ R continuous

and locally M -bounded. Since D is effective, fi ∈ O(Ui), so − log ‖fi‖ is

locally M -bounded from below on Ui(M); therefore, λ|Ui(M) extended to a

function Ui(M) → R ∪ {∞} is locally M -bounded from below. Therefore,

λ (extended to a function X(M) → R ∪ {∞}) is locally M -bounded from

below, so, since X is complete, λ ≥ −γ for some Mk-constant γ. �

Corollary 28.1.2

For such (D,λ), hλ,k ≥ −O(1) for all P ∈ (X \ SuppD)(k).

Proposition 28.1.3

Let (D,λ) be a Weil function on a normal variety X. Then if λ ≥
OMk

(1), then D is effective. Moreover, if λ = OMk
(1), then D = 0.

Proof: The proof of the first part is in a handout; the second part follows

by applying the first part to (D,λ) and (−D,−λ). �

Example 28.1.4

Let X be the affine curve y2 = x3 (e.g the cuspidal cubic), and let

X be its projective closure in P2
k given by y2z = x3 in homogeneous

coordinates. Let f = 1 + y
x ∈ K(X), D = (f), λ = − log ‖f‖.

Then (D, f) is a Weil function on X. Since X \X is a single point

[0 : 1 : 0], we will use affine coordinates to refer to points on X and

∞ to refer to [0 : 1 : 0].

Note that f vanishes at (1,−1), and that this is a simple zero,
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Morally, this result and the one below
show us how to cut and paste Weil func-

tions.

because
(
1− y

x

)
f = 1 − y2

x2 = 1 − x and 1 − y
x does not vanish

at (1,−1). f has a pole at ∞, which is similarly a simple pole. f

is undefined at (0, 0). Let D′ be the Cartier divisor represented by

{(V1, f), (V2, 1)}, where V1 = X \{(0, 0)} and V2 = X \{(1,−1),∞}.
D 6= D′ since D may be represented by {(V1, f), (V2, f)}, and f 6∈
OX(V2)× (due to being undefined at (0, 0)). We claim that λ is a

Weil function for D′.

On V1, this is trivial since α1 = 0. On V2, we must show that

− log ‖f‖ is continuous and locally M -bounded. The normaliza-

tion of X is X̃ = A1
k, via the map t 7→ (t2, t3) inducing a map A1

k =

Spec k[t]
ϕ−→ X, where f pulls back to 1+t. Now ϕ−1(V2) = A1

k\{t =

−1} = Spec k
[
t, 1

1+t

]
, so ϕ∗f ∈ OX̃(ϕ−1(V2))× = k

[
t, 1

1+t

]×
.

Therefore, − log ‖ϕ∗f‖ is continuous and locally M -bounded on

ϕ−1(V2)(M), so− log ‖f‖ is continuous (because ϕν : (ϕ−1(V2))(Cν)→
V2(Cν) is a homeomorphism in the ν-topology for all ν), and locally

M -bounded (since ϕ is finite and therefore proper). Therefore, both

(D,λ) and (D′, λ) are Weil functions on X, but D 6= D′. Since

the normalization of X is Spec k[t], the divisors D and D′ both pull

back to the divisor t = −1 on A1
k.

Proposition 28.1.5

Let X be a complete variety over a number field or function field k,

(D,λ1) and (D,λ2) Weil functions on X. Then if S ⊆ Mk is any

subset, λS := (X \ SuppD)(M)→ R given by

λS(P ) =

λ1(P ) if ν(P ) 6∈ S
λ2(P ) if ν(P ) ∈ S

Then (D,λS) is a Weil function on X. Moreover, the set

{ν ∈Mk : λ1|(X\SuppD)(Cν)(P ) 6= λ2|(X\SuppD)(Cν)(P )}

is finite.

Proof: The first part is trivial, the second part has already been shown.

�

Proposition 28.1.6

Let X be a complete variety over a number field or function field

k, (D,λ) a Weil function on X. Let ν ∈ Mk, Xν = X ×k kν ,

Dν the pullback of D to Xν . We identify Xν(Cν) with X(Cν) in

the obvious way, so Xν(M) = Xν(Cν) = Xν(Cν) ⊆ X(M) (where

Xν(M) = Xν(Cν) since Mkν = {ν}). Then (Dν , λ|Xν(M)) is a Weil
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The only example I can really keep in

my head: F = Q, k = Qp, Y =
SpecZp, with K(Y ) ∼= Qp over Q, and

apparently SpecZp is a curve over Qp
or Q.

The associated points of a Noetherian

scheme X that is reduced or Cohen-

Macaulay are just the generic points of
irreducible components of X; I don’t

think we will require anything more
general than this.

One may similarly define affine and
quasi-projective models.

function on Xν . Moreover, if (Dν , λ1) is a Weil function on Xν , with

λ2 : (X \ SuppD)(M)→ R given by

λ2(P ) =

λ1(P ) P ∈ Xν(M)

λ(P ) else

Then (D,λ2) is a Weil function on X.

Proof: The proof follows immediately from definitions. �

Models

As shorthand for what follows, if k is a number field, then Y will always

refer to SpecOk. If k is as function field in one variable over a “constant

field” F , then Y is the unique (up to isomorphism) nonsingular projective

curve over F , with F -isomorphism k
∼−→ K(Y ). If k is a completion of a

number field or function field k0 at a place ν ∈Mk0 , then Y is understood

to be SpecAν where Aν is the valuation ring of kν if ν is non-archimedean,

or Spec k if ν is archimedean.

In each of the above cases, K(Y ) ∼= k (over F , if necessary), canonically.

From now on, when considering models, we will exclude k = R or k = C,

in which case dimY = 1 in all cases.

Definition 28.2.1: Models

Let V be a variety over k. Then a model for V over Y is a separated,

finite type morphism π : X → Y together with an isomorphism

i : V
∼−→ Xk := X ×Y Spec k such that all associated points of X lie

on Xk (i.e X is integral, Xk is reduced, so X is reduced, and X has

only one irreducible component, so only one associated point).

Definition 28.2.2

A model π : X → Y is projective (resp. proper) if the morphism π is

projective (resp. proper). Such models exist only if V is projective

(resp. complete).

Example 28.2.3

1. PnY is a projective model for Pnk for all n ≥ 0.

2. AnY is a model for Ank for all n ≥ 0.

3. Let E be a vector sheaf of rank n + 1 over Y . Then P(E) =

Proj(Sym E) (as in Hartshorne, not Vakil) is a model for Pnk .
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The proof is left as an exercise.

The following proof is a sketch. The de-

tails of this construction are fleshed out
in Lemma 2.8 of the Chapter 3 hand-

out.

4. PnY \Z is a model for Pnk over Y where Z is a finite set of closed

points of Y . It is not projective or proper, unless Z = ∅.

5. If k is the completion of a number field or function field k0 at a

place ν ∈ M0
k0

, then Pnk is a model for Pnk (this is a special case

of the above, with Z the closed point of Y since Y = Spec k).

Proposition 28.2.4

If V is a projective variety over k, then it has a projective model.

Proof: Fix a closed embedding V ⊆ Pnk . Topologically, V is a subset of PnY
via i : Pnk ↪→ PnY . Let X be the closure of V in PnY , with reduced induced

subscheme structure. Since the topology on Pnk is the relative topology from

PnY , X ∩ Pnk = V as sets. Since X is reduced, so is Xk (by looking at the

local rings), so V → Xk is an isomorphism (Hartshorne II Ex. 3.11c). Since

X is reduced and has only one irreducible component, it has no associated

points other than the generic point of Xk, and is therefore a (projective)

model for V . �

Proposition 28.2.5

Let X be a model (over Y ) of a variety V (over k), V ′ a closed

subvariety of V , X ′ the closure of V ′ in X (via i : V
∼−→ Xk) with

reduced induced subscheme structure. Then X ′ is a model for V ′;

if the model X is projective (resp. proper), then so is X ′.

Proof: For the first assertion, the same proof as above works, and the

second assertion is immediate. �

Corollary 28.2.6

Any affine variety over k has a model over Y .

Proposition 28.2.7

Let X and V be as above, and let V ′ be an open subvariety of V .

Then X ′ := X \ (V \ V ′) is a model for V ′.

Corollary 28.2.8

Any quasi-projective variety over k has a model over Y .

Proposition 28.2.9

Let V be any variety over k a number field, function field, or the

completion of a number field or function field at a non-archimedean

place ν. Then V has a model over Y = SpecAν .
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The idea of the proof is the same as

above and is left as an exercise. The
following corollary is of this proof strat-

egy, not necessarily of the proposition

itself.

Vojta discusses some finer points of the
construction here; he is testing us here,

waiting for someone to doubt his divin-

ity by asking what we’re actually work-
ing towards. O, ye of little faith.

Method 1 and Method 2 need not give
the same model, but this does not mat-
ter because none of this matters.

According to Deligne, the condition
of Noetherianity on S can be weak-
ened to quasi-compactness and quasi-
separatedness.

Proof: Let U1, · · · , Un be open affines in V that cover V . Let X1, · · · , Xn

be models for U1, · · · , Un, respectively, over Y . The gluing data for com-

bining the Ui to get V (cf. Hartshorne II Ex. 2.12) extend to give valid

gluing data for combining X1, · · · , Xn into one scheme outside of proper

Zariski-closed subsets disjoint from U1, · · · , Un resp. Therefore we may

eliminate finitely many closed fibers over Y , and then glue the Xi to get

a scheme X over Y whose generic fiber is isomorphic (over k) to V . To

ensure separatedness, we exclude more closed fibers. �

Proposition 28.2.10

Let V be as above, D, L, or E be a Cartier divisor, line sheaf, or

vector sheaf on V respectively. Then X may be constructed so that

D, L, or E extends to the same type of object on X.

Corollary 28.2.11

Given Cartier divisors D1, · · · , Dn, line sheaves L1, · · · ,Lm, and

vector sheaves E1, · · · , Ep on V , X may be constructed so that all of

these extend to X.

There are two proof methods for this result that we will briefly outline: the

first method handles all of the objects (divisors, vector sheaves) simultane-

ously; the second proceeds sequentially by constructing a model for each

given object (such that the object extends to the model). Then, with the

models X1, · · · , Xn+m+p with isomorphisms ij : V
∼−→ (Xj)k for all j, we

let X be the closure of the image of the morphism (i1, · · · , in+m+p) : V →∏
j Xj (taking the product over Y ). Then X is a model for V and the

projections X → Xj can be used to pull back the extended objects to X.

We now want to prove the existence of proper models.

Theorem 28.2.12: Nagata

Let X be a scheme, separated and of finite type over a Noetherian

scheme S. Then there exists a proper S-scheme X and an open em-

bedding X ↪→ X over S with schematically dense image. Moreover,

given finitely many Cartier divisors, etc., on X, X can be chosen so

that these objects extend to X as the same types of objects.

Note that a variety V over k is not of finite type over Y unless Mk is

finite. This is an obstruction to directly applying Nagata’s theorem, but

can be resolved, as we will discuss. Also note that an open subset U of a

Noetherian scheme X is schematically dense iff it contains all associated

points of X (Chapter 0, Prop 3.2 in the handout or Vakil 5.5.4).
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Recall that a Weil divisor is effective if

all of its coefficients are nonnegative.

Since we’re in a new lecture here, note
again that k is always a number field,
function field, or the completion thereof

at a non-archimedean place, and Y is
defined as far above. π : X → Y is a
model for a variety V over k.

Theorem 28.2.13

Every complete variety over k has a proper model over Y , and the

statement of the previous corollary holds.

Proof: Let V be a complete variety over k. By Proposition 28.2.9, V

has a model X0 over Y . This is separated of finite type, so by Nagata’s

theorem, there exists a proper scheme X over Y and an open immersion

X0 ↪→ X with schematically dense image. Then all associated points of X

lie in x0, hence in (X0)k ⊆ Xk. Now we have i : V
∼−→ (X0)k ↪→ Xk; since

V is proper over k, its image in Xk is proper over k, so it is closed in Xk,

and is therefore equal to Xk since it contains the dense open subset (X0)k.

Therefore (X0)k = Xk, so i : V → Xk is an isomorphism, and X is the

desired proper model. �

Cartier divisors and vector sheaves extend in this situation using the earlier

corollary and Nagata’s theorem.

Models and Rational/Algebraic Points

Example 28.3.1

Let k = Q with Y = SpecZ, V = A1
Q with model A1

Z. Fix 2
3 ∈ Q

which is a point in A1
Q corresponding to the maximal ideal

(
x− 2

3

)
.

The closure of this point in A1
Z = SpecZ[x] is the maximal ideal

(3x − 2). Similarly, 20 ∈ Q is the maximal ideal (x − 20) which is

unchanged when passing from Q to Z. These rational points on A1
Q

give rational sections of the map π : A1
Z = SpecZ[x]→ Y = SpecZ.

Definition 28.3.2

An effective Weil divisor
∑
Y nY Y is reduced if nY ≤ 1 for all Y .

Theorem 28.3.3: Roth

Let k be a number field or a function field of characteristic 0, S a

finite subset of Mk, D a reduced effective divisor on P1
k, λD a Weil

function for D, ε > 0, and c ∈ R. Then the inequality∑
ν∈S

λD,ν(P ) ≤ (2 + ε)hk(P ) + c

holds for all but finitely many P ∈ (P1
k \ SuppD)(k).
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Didn’t follow much of this proof.

Things fall apart; the centre cannot

hold; Mere anarchy is loosed upon
the world, The blood-dimmed tide is
loosed, and everywhere The ceremony
of innocence is drowned;

Surely some revelation is at hand;
Surely the Second Coming is at hand.

Lemma 28.3.4

Let P ∈ Xk(k) = X(k), then, there exists a unique rational section

s : Y 99K X of π such that s(η) = P where η is the unique generic

point of Y . The image of s (taken with the largest possible domain)

is the closure of {P} in X. Moreover, if π is proper, then s is a

regular section s : Y → X.

Proof: Let E be the closure of {P} in X. Note that E ∩Xk = {P}. One

inclusion is obvious, the other follows from the fact that P is a closed point

in Xk and Xk \ {P} = U ∩Xk for some open set U ⊆ X not containing P

(as the topology on Xk is induced by the topology on X, seeHartshorne II

Ex 3.10). Therefore, E ⊆ X \ U and E ∩Xk ⊆ (X \ U) ∩Xk = {P}.

Moreover, E is irreducible since it is the closure of a point, so it corresponds

to an integral subscheme Ered of X, whose generic point is P . Therefore,

K(E) = κ(P ) = k = K(Y ) so there exists a rational map Y 99K E ↪→ X

with image contained in E, whose inverse as a rational map is π|E : E → Y .

Any two such rational sections must coincide, by the valuative criterion of

separatedness, so the existence of a unique such s follows.

To see that the image of s is equal to E, by Nagata’s Theorem, there exists

an open embedding X ↪→ X overY with dense image (so X is a model for

Y over Xk) such that X is proper over Y . Let E = {P} (taking the closure

in X); this gives a regular section s : Y → X with s(η) = P which then

gives a rational section s|s−1(X) : Y 99K X. This has image E ∩ X = E,

which is therefore closed in X.

If π is proper, s : Y 99K X extends to a morphism by the valuative criterion

of properness (see Stacks 0BX7). This extended map has image contained

in E, so its image is in fact equal to E (since idY is proper, the image of a

proper scheme is closed). �

Definition 28.3.5

An integral closed subscheme (or irreducible closed subset) Z ⊆ X

is vertical if it is contained in a closed fiber of π : X → Y and

horizontal if not. In the latter case, π|Z is dominant.

Corollary 28.3.6

There exists a canonical bijection between X(k) and the set of ra-

tional sections of π.

Proof: We have a map from X(k) to the set of rational sections of π by the

above lemma. This correspondence is surjective because it has inverse s 7→
s(η). The uniqueness result in the lemma implies that this correspondence

is bijective. �
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That twenty centuries of stony sleep

Were vexed to nightmare by a rocking

cradle, And what rough beast, its hour
come round at last, Slouches towards

Bethlehem to be born?

Lemma 28.3.7

Let L be a finite extension of k and let Y ′ be the integral closure

of Y in L. Then Y ′ is obtained from L in the same way as Y is

obtained from k, e.g, the construction of Y commutes with integral

closure over field extensions.

Proof: If k is a number field, OL is the integral closure of Ok in L, from

which the result is immediate. If k is a function field, Y ′ is a normal curve

over F whose function field is L. If k is the completion of a number field

or function field k0 at a non-archimedean place ν, the integral closure in L

of the valuation ring of k is the valuation ring of L (this is Hensel’s lemma,

see Neukirch II 4.7). Further note that if k = R or C, this result is trivial.

�

Proposition 28.3.8

Let L and Y ′ be as in the above lemma. Then the map

{rational maps Y ′ 99K X over Y } → Xk(L)

given by the s 7→ s(η′) (where η′ is the generic point of Y ′) is

bijective. Its inverse is given by extending P ∈ Xk(L) = X(L) to a

rational map s : Y ′ 99K X.

Proof: The map is injective by the valuative criterion of separatedness.

The map is surjective: let X ′ = X ×Y Y ′ and let P ∈ X(L). Then, by the

universal property of products, there exists a unique map Q making the

following diagram commute:

SpecL

X ′ X

Y ′ Y

P

Q

There exists a unique rational section s′ : Y ′ → X ′ such that the image of

Q equals s′(η′). Composing with the projection X ′ → X gives a rational

map s : Y ′ 99K X over Y such that s(η) = P . The inverse is well-defined

by the valuative criterion of separatedness. �

Definition 28.3.9: S-integral points

Let V be an affine variety over k, i : V ↪→ Ank a closed embedding

over K, S ⊆ Mk a nonempty finite set containing all archimedean

places of k. Let R ⊆ k be the subring {a ∈ k : ‖a‖ν ≤ 1 for all ν ∈
Mk \ S}. Then a rational point P ∈ V (k) is S-integral relative to
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Apparently the following definition is
due to Serre, who enjoyed murdering

orphans in his spare time.

The proof is omitted but may be as-
signed as homework.

i if all coordinates of i(P ) lie in R. An algebraic point P ∈ V (k)

is S-integral relative to i if all coordinates of i(P ) are integral over

R (note that R is integrally closed so S-integral rational points are

S-integral algebraic points). Equivalently, P is S-integral if for some

(and therefore for all) finite extensions L of k such that P ∈ V (L),

all coordinates of i(P ) lie in

{α ∈ L : ‖α‖ω ≤ 1 for all ω ∈ML lying over some ν ∈Mk \ S}

Note that this definition depends on i.

Example 28.3.10

Let k = Q, S = {∞}, V = A1
Q, and let P be the point 2

3 . Then

R = Z, and P is not integral with respect to the identity map on

A1
Q, but it is integral w.r.t the multiplication by 6 map from A1

Q
to itself. In fact, for all algebraic points P ∈ V (k), there exists an

affine embedding i : V ↪→ Ank such that P is S-integral w.r.t i (here

we can see this by clearing denominators).

Definition 28.3.11

A set Σ ⊆ V (k) is S-quasi-integral if there exists a closed embedding

i : V ↪→ Ank such that the denominators of coordinates of i(P ) are

bounded independently of P , e.g, there exists c ∈ k× independent

of P such that all coordinates of i(P ) lie in c−1R for all P ∈ Σ.

As stated above, all finite sets are S-quasi-integral; this is also true, but

more nontrivial for infinite sets. This notion is independent of the choice

of i:

Proposition 28.3.12

Let V be an affine variety over k, and let i : V ↪→ Ank , j : V ↪→ Amk be

closed embeddings over k. Then for all c ∈ k× there exists c′ ∈ k×

such that the set

{P ∈ V (k) : P is integral w.r.t c′ · j}

contains the set

{P ∈ V (k) : P is integral w.r.t c · i}

It is sometimes useful to define integral points on varieties that are not affine

(and not projective), e.g, A1 × P1, or some moduli spaces. As the above

definition is not the final definition, to motivate the ultimate definition we

have the following:
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There is no real direction here, neither

lines of power nor cooperation. Deci-
sions are never really made – at best

they manage to emerge, from a chaos

of peeves, whims, hallucinations and all
around assholery.

The following is essentially Fermat’s

Last Theorem over certain function

fields.

Proposition 28.3.13

Let S, R, and i : V ↪→ Ank be as above. Let X be the model

of V obtained by taking the closure of the image of i is AnY . Let

U = SpecR ⊆ Y (an open subscheme), then a point P ∈ V (k) is

S-integral w.r.t i iff the rational section s : Y 99K X corresponding

to P extends to a regular map U → X. Equivalently, by abuse of

notation, P ∈ X(U).

Proof: Let P ∈ V (k), and write i(P ) = (a1, · · · , an) ∈ kn. Then the

map s : Y 99K AnY corresponding to P is represented by the morphism

SpecA → AnY corresponding to the homomorphism A[x1, · · · , xn] → A

over A with xi 7→ ai for all i on some nonempty open affine SpecA in Y ,

and where U is one of these open affines iff ai ∈ R for all i iff P is S-integral

w.r.t i. A similar argument works for P ∈ V (k). �

Definition 28.3.14

Let S and R be as above. A point P ∈ V (k) is S-integral with

respect to X if the rational section s : Y 99K X corresponding to P

is regular on U = SpecR, i.e, if P ∈ X(SpecR) = X(R).

Note that we do not require X to be a proper model, so π : X → Y may

not be surjective. If π(X) 6⊇ SpecR, then X(R) will be be empty. If X is

a proper model, then all P ∈ X(k) are integral w.r.t X, by the valuative

criterion of properness, or the result from Stacks 0BX7.

Theorem 28.3.15: Silverman

Let F be a field of characteristic 0, n ≥ 3 an integer. Suppose

a, b, c ∈ F [t] with (a, b, c) = (1) in F [t] and an + bn + cn = 0. Then

a, b, c ∈ F (equivalently, hk([a : b : c]) = 0).

Proof: We may assume that F is algebraically closed. Let Y = P1
F (this is

our “usual” Y as above), with K(Y ) = k. Let V be the curve xn+yn+zn =

0 in Pnk , X0 the curve xn + yn + zn = 0 in PnF , and let X = X0 ×F Y , with

projections p : X → X0 and π : X → Y . Since V ∼= X0 ×F k, π is a proper

model for V .

Polynomials a, b, c ∈ F [t], not all zero, with an + bn + cn = 0 define a

point P ∈ X(k), hence a section σ : Y → X of π (which is regular, not

rational, since π is proper). We may assume that (a, b, c) = (1) in F [t] (i.e

they are relatively prime), then hk(P ) = max(deg a,deg b,deg c) (by direct

computation), so hk(P ) = 0 ⇐⇒ a, b, c ∈ F .

Then, p ◦ σ gives a morphism Y = P1
F → X0. We can describe this map

concretely as follows: closed points y ∈ Y are elements of F since F is

algebraically closed, and p ◦ σ takes y to [a(y) : b(y) : c(y)] ∈ X0(F ) (since
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Before Wiles resolved Fermat’s Last

Theorem, there was effort spent on try-

ing to find an analogue for SpecF in the
number field case (such as “black dot”

and “white dot,” apparently).

Imagine a French chef so thoroughly
obsessed with mise en place that he re-
quired you to prep the ingredients for

every meal you would ever cook in the
rest of your life before allowing you to

begin cooking. What a wacky concept

with no relation to any current context.

the three are relatively prime, they are not simultaneously zero). If a, b, c are

not all constant, p◦σ is nonconstant. But P1
F has genus 0, and X0 has genus

greater than 0 (by the genus-degree formula), which is a contradiction,

as there exist nonzero differentials on X0 (since h0(X0, ωX0) = g > 0)

which would pullback to give nonzero differentials on P1
F ; no such nonzero

differentials exist, as ωP1
F

∼= O(−2). �

The reason this argument fails in the number field case is that the con-

structions corresponding to X0, SpecF , and p : X → X0 do not exist or do

not have the same properties in the case of number fields.

Let k be a number field or function field, Y a model for k (as above). Let

ν be a non-archimedean place of k, and let Rν be the valuation ring of

Cν . What do Cartier divisors on SpecRν look like? Of course, we can

describe Cartier divisors on any scheme in terms of an open cover and

rational functions, but SpecRν is equivalent (as a topological space) to the

Sierpiński space of two points, one open (the generic point (0)), one closed

(the unique maximal), so any open cover might as well be {SpecRν} itself,

since any open set must contain the generic point, and the closed point on

its own is a closed set. Therefore, the group of Cartier divisors on SpecRν is

CDiv(SpecRν) ∼= K×(SpecRν)/O(SpecRν)× = C×ν /R×ν ; the latter group

is the valuation group of Cν , which in turn is isomorphic to Q.

Let V be a complete variety over k, and let π : X → Y be a proper

model for V over Y . Since π is a proper model, X(Cν) = X(Rν) (from

the valuative criterion of properness), and let D be a Cartier divisor on X,

P ∈ (X \ SuppD)(Cν) = (V \ SuppDk)(Cν) where Dk is D restricted to

the generic fiber. Note that (V \SuppD)(Cν) 6= (X \SuppD)(Rν) because

X \ SuppD is not generally proper.

P gives a morphism ϕP : SpecRν → X over Y (with image not contained in

SuppD) so we have a Cartier divisor ϕ∗PD on SpecRν (which is a rational

number as above). Also, we could have a rational (or algebraic) point

P ∈ V (k) = X(k); this gives a section σ : Y → X, and this gives a point

in X(Cν) since k ⊆ Cν so again we have a divisor σ∗D in SpecRν (which

comes from a divisor on SpecAν , where Aν is the valuation ring of kν). In

that case, the corresponding rational number is an integer.

Let D be represented by pairs (Ui, fi) where Ui is open in X and fi ∈
K(X)× = K(V )× for all i. Pick i such that P ∈ Ui, then ϕ∗PD is the

principal divisor (ϕ∗P fi) on SpecRν . For any other choice of i, say j, with

P ∈ Uj , fi/fj ∈ O(Ui ∩ Uj)×, so ϕ∗P fi/ϕ
∗
P fj ∈ R×ν , so ‖ϕ∗P fi‖ = ‖ϕ∗P fj‖,

e.g, ‖ϕ∗P fi‖ is independent of the choice of i, so ‖ϕ∗PD‖ is well-defined.
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Definition 28.3.16

Let D′ be a Cartier divisor on SpecRν . Then ‖D′‖ := ‖f‖ for any

choice of pair (SpecRν , f) representing D′.

Recall that kν has a discrete valuation ν : k×ν � Z and let ‖α‖ν := c− ordp α

(where ν is archimedean) for all α ∈ k×ν where ordp is taken w.r.t the

valuation ring Aν and its maximal ideal p, and c > 1 is a fixed constant.

So our rational number is − logc ‖ϕ∗PD‖. In the case of function fields and

completed fields, we take c = e (as a convention), and this rational number

is − log ‖ϕ∗PD‖. For number fields, we let c = |Ok/p| (as in the p-adic

valuation and norm).
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I have not absorbed one iota of this in-

formation.
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The Weil-Cartier-Vojta Axis of Evil

Today we will show that a Cartier divisor D on X defines a Weil function

on V for D|V (identifying V with Xk), except that the Weil function will

only cover non-archimedean places.

Definition 29.1.1

Let S be a subset of Mk. Then V (S) :=
∐
ν∈S V (Cν) ⊆ V (M) and

X(S) =
∏
ν∈S X(Cν) ⊆ X(M) with X(S) = V (S) and X(M) =

V (M) via the identification of V with Xk. A subset E ⊆ V (S) is

M -bounded if it is M -bounded as a subset of V (M) and likewise for

E ⊆ X(S) (via X(S) = V (S) as above). A function f : V (S) → R
is locally M -bounded from below if for all M -bounded subsets E ⊆
V (S) there exists an Mk-constant γ such that f(P ) ≥ −γν(P ) for

all P ∈ E. One may define local M -boundedness from above and

without qualification similarly.

A partial Weil function on V over S is a pair (D,λ) consisting of a

Cartier divisor D on V and a function λ : (V \SuppD)(S)→ R that

satisfies all of the conditions for a Weil function but with M replaced

by S. Finally, Weil functions on X and partial Weil functions on X

are defined similarly. using X(S) = V (S) (and D may be a divisor

on X, in which case D|Xk is used).

Definition 29.1.2

Assume that V is complete and that π : X → Y is proper. Let D be

a Cartier divisor on X. Then we define λD : (X \SuppD)(M0
k )→ R

by λD(P ) = − log ‖ϕ∗PD‖, where ϕP : SpecRν → X extends to

P : SpecCν → X, where Rν is the valuation ring of Cν .

Proposition 29.1.3

Let V , π : X → Y , D, and λD be as above. Then λD is a partial

Weil function for D over M0
k .

Proof: Let i : V → X be the map V
∼−→ Xk → X and let D be repre-

sented by (Uj , fj) on X. Then (i−1(Uj), i
∗fj) represents i∗D on V , and



math 254: algebraic number theory 157

− log ‖ϕ∗PD‖ = − log ‖fj(P )‖ for all P ∈ Uj(Cν) \ SuppD and all j.

We need to show that λD + log ‖fj‖ extends to a continuous locally M -

bounded function on Uj(M
0
k ) for all j. Pick ν ∈M0

k and note that Uj(Rν) ⊂
Uj(Cν). However, Uj(Rν) is a clopen subset of X(Cν); closed because,

assuming Uj is affine, it is given by ‖xl‖ν ≤ 1 for all l, and open because

if P ∈ Uj(Rν), then so is an open neighborhood of P (with radius 1).

Also, λD,ν + log ‖fj‖ν extends to a continuous function on Uj(Rν) for all j

(namely, 0). Since Uj(Cν) =
⋃
j′ Uj′(Rν) ∩ Uj(Cν) and

λD,ν + log ‖fj‖ν = − log ‖fj′‖ν + log ‖fj‖ν = − log ‖fj′/fj‖ν

is continuous on Uj′(Cν)∩Uj(Cν) ⊇ Uj′(Rν)∩Uj(Cν), so λD,ν + log ‖fj‖ν
is continuous on Uj(Cν).

Local M -boundedness is quite involved to prove; see the Chapter 3 handout,

lemma 5.8. �

Lemma 29.1.4

Let k = R, C, or a number field, ν an archimedean place of k. Let

V be a complete variety over k, and D a Cartier divisor on V . Then

there exists a partial Weil function for D over {ν} on V .

Proof: Let D be represented by (Ui, fi). We may assume that the index

set for i is finite. Let {ϕi : X(Cν)→ R} be a continuous (or C∞) partition

of unity with Suppϕi b Ui(Cν) (where U b V means that there exists K

compact such that U ⊆ K ⊆ V ) for all i. Then
∑
i ϕi · (− log ‖fi‖) is such

a partial Weil function. �

Theorem 29.1.5

Let k be a Vojta field, let V be a complete variety over k, D a

Cartier divisor on V . Then there exists a Weil function for D on V .

Proof: If M0
k 6= ∅, then there exists (by Nagata) a proper model π : X → Y

for V (with Y as usual) such that D extends to a Cartier divisor D̃ on X.

Then (by the above proposition) there exists a partial Weil function on V

for D over M0
k .

For all ν ∈M∞k , there exists a partial Weil function on V for D over {ν} (by

the above lemma). These (finitely many) partial Weil functions combine to

give a Weil function for D over Mk. �

We need V to be complete because it is assumed to be complete in the

proposition. Otherwise, the model X might be missing a whole closed fiber,

so λD would not be defined on (X \ SuppD)(Cν) in that case. Of course,

you can always embed a non-complete variety into a complete variety in

such a way that the divisor extends.
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Deeply cursed definition.

Definition 29.1.6: Integrality

Let k be a number field or function field, or the completion of a

number field or function field k0 at a non-archimedean place ν, and

Y as usual for k. Let S ⊆ Mk be a finite subset containing M∞k .

Let V be a variety over k embedded as an open subscheme of a

complete variety V over k, such that V \ V is the support of an

effective Cartier divisor D on V . Let λD be a partial Weil function

for D on V over some S′ ⊇ Mk \ S. Then a point P ∈ V (k) is

(S, λD)-integral if λD,ν(P ) ≤ 0 for all ν ∈Mk \S and λD-integral if

it is (M∞k , λD)-integral.

Proposition 29.1.7

With k, Y, S, V, V , and D as above, let π : X → Y be a proper model

for V over Y such that D extends to an effective Cartier divisor D

on X, and X = X \ SuppD. Then X is a model for V (which may

omit entire fibers of π but this is unavoidable). Let λD be the partial

Weil function for D over M0
k defined above; then a point P ∈ V (k)

is integral w.r.t the model X iff it is λD-integral.

Proof: Let σ : Y → X be the regular section of π corresponding to P .

Then P is integral w.r.t X iff

σ(Y ) ⊆ X ⇐⇒ σ(Y ) ∩ SuppD = ∅ ⇐⇒ σ∗D = 0 ⇐⇒
λD,ν(P ) = 0 for all ν ∈M0

k ⇐⇒ P is λD-integral

Note that λD,ν ≥ 0 everywhere on its domain since D is effective. �

Note that there is a similar definition of S-integrality w.r.t X and a similar

proposition is true for this definition. We may also repeat this definition

for algebraic integral points.

Heights via Models

Until further notice, k is a function field in one variable, Y is a smooth

projective curve over F where k = F (t) and k(Y ) ∼= k over F (as usual).

Let π : X → Y be a proper model for a complete variety V ∼= Xk, and

let D be a Cartier divisor on X. Let P ∈ V (k), and let σ : Y → X be

the corresponding section of π. Let λD be the Weil function defined above

(note that M∞k = ∅). Then

hλD (P ) =
∑

ν∈Y \{η}

λD,ν(P ) =
∑
ν

− log ‖fi(P )‖ν =
∑
ν

nν(− log ‖πν‖ν)

where η is the generic point of Y , since closed points of Y correspond to

places of k, σ∗D =
∑
ν nν · [ν] as a Weil divisor, and πν is a uniformizer at
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ν.

The first equality above is by definition of hλD . The second equality follows

by representing D by a collection (Ui, fi) and for each ν choose i such that

σ(ν) ∈ Ui; in detail, let Rν be the valuation ring of Cν , τν : SpecRν → X

the composite map SpecRν → Y
σ−→ X, and choose i such that σ(ν) ∈ Ui,

then the Cartier divisor τ∗νD on SpecRν is represented by the single pair

(SpecRν , f̃) where f̃ = τ∗ν fi. Then f̃ = fi(P ), so ‖τ∗νD‖ = ‖τ∗ν fi‖ =

‖fi(P )‖ν so λD,ν(P ) = − log ‖τ∗νD‖ = − log ‖fi(P )‖ν by definition of λD,ν .

The third equality is by defining nν = ν(fi(P )) where ν : C∗ν → Q comes

from the valuation ν : k∗ν � Z which has ν(πν) = 1 by the definition of a

uniformizer. So ‖fi(P )‖ν = ‖πν‖nν because fi(P )/πnνν is a unit in Rν .

By definition of ‖·‖ν , ‖πν‖ν = e[κ(ν):F ] where κ(ν) is the residue field of kν ,

so
∑
ν nν(− log ‖πν‖ν) =

∑
nν deg ν where by definition deg ν = [κ(ν) : F ]

and this equals deg(σ∗D) by the definition of the degree of a divisor on a

nonsingular curve (Vakil 18.4.1, page 479).

Lemma 29.2.1

In the above situation, hλD (P ) = deg σ∗D for all P ∈ V (k) such

that P 6∈ SuppD (so σ(Y ) 6⊆ SuppD on X).

If P ∈ SuppD, then we defined hλD (P ) to be hλ1
(P ) where λ1 is a Weil

function for a divisor D1 on V such that P 6∈ SuppD1 and D1 = D+ (f1),

and λ1 = λD − log ‖f1‖. We showed that this is well-defined because

if f2 is another such function, D2, λ2 similarly defined, then hλ1
(P ) −

hλ2
(P ) =

∑
ν − log ‖(f1/f2)(P )‖ν = 0 by the product formula (note that

P 6∈ Supp div(f1/f2) = SuppD1 −D − 2).

We can work similarly here, using the following lemma:

Lemma 29.2.2

Let D be a principal (Cartier) divisor on X, say D = (f) with

f ∈ K(X)× = K(V )×. Then λD (as defined last time) is equal to

− log ‖f‖, and hλD (P ) = 0 for all P ∈ (V \ SuppD)(k).

Proof: The first claim is immediate from the second equality in the above

discussion, since in this case, D is represented by the collection (X, f), so

fi = f for all ν. For the second claim, note that

hλD (P ) = deg σ∗D = deg σ∗(f) = deg f(P ) = 0

where the final equality is by the product formula. �



160 abhishek shivkumar

This discussion is the Last Year at

Marienbad of mathematics.

Theorem 29.2.3

hλD (P ) = deg σ∗O(D) for all P ∈ V (k) (including P ∈ SuppD(k))

where σ : Y → X is the section corresponding to the rational point

P as usual.

Proof: Find f ∈ K(X)× = K(V )× such that P 6∈ Supp(D + (f)). Then

hλD (P ) = hλD+(f)
(P ) = deg σ∗(D+(f)) = deg σ∗O(D+(f)) = deg σ∗O(D)

where the final equality is by the fact that O(D + (f)) ∼= O(D), the first

equality by the definition of hλD (specifically linearity), and the intermedi-

ate equalities follow by above results. �

Definition 29.2.4

Let L be a line sheaf on X. Then hL(P ) := deg σ∗L for all P ∈ V (k)

where σ : Y → X corresponds to P .

The desired additivity and functoriality properties follow easily: if L and

M are line sheaves on X, then

hL⊗M(P ) = deg σ∗(L ⊗M) = deg(σ∗L ⊗ σ∗M) =

deg σ∗L+ deg σ∗M = hL(P ) + hM(P )

for all P ∈ V (k). For functoriality, let fk : V → W be a morphism over k

of complete varieties over k. Let X and Z be models (over Y ) for V and W

respectively. In general, fk only extends to a rational map X 99K Z, so let

X ′ be the closure of the graph of this rational map. This too is a model for

V , and fk : V → W extends to a morphism f : X ′ → Z over Y , and there

is also a morphism X ′ → X. Let P ∈ V (k), M a line sheaf on Z. Then

f0(P ) ∈ W (k), and we have hM(f0(P )) = hf∗M(P ) for all P . To see this,

let σ : Y → X ′ and τ : Y → Z be sections corresponding to P and fk(P ),

respectively. Then τ = f ◦ σ, and

hM(fk(P )) = deg τ∗M = deg σ∗f∗M = hf∗M(P )

NOte that everything done so far works for algebraic points (rather than

just rational points) using the bijection between V (L) and HomY (Y ′, X)

for a proper model X for V over Y .

Number Fields

Let k be a number field, Y = SpecOk as usual. As before, and unless stated

otherwise, V is a complete variety over k and π : X → Y is a proper model

for V over Y . We’d like to extend the model Y to something incorporating
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If V is singular, then smoothness can

be defined, but it’s tricky.

all of the archimedean places of k, but we don’t know how to yet. Instead,

we’ll add structure to the line sheaves on X.

Definition 29.3.1

Let V be a variety over C, L a line sheaf on V . A metric on L is a

norm ‖ · ‖ on each fiber Lx of L at x ∈ V (C) such that if {bx} is a

basis for Lx, then ‖zbx‖ = cx‖z‖ for all z ∈ C where cx is a chosen

positive real number. A metric on L is continuous (resp smooth)

at x ∈ V (C) if there exists a holomorphic section s of L over some

open neighborhood U of x (in the classical topology, i.e, ν-topology)

which does not vanish at x, and such that the function P 7→ ‖s(P )‖
is continuous at x (resp smooth).

For a vector sheaf E on V , you would define a (positive definite) hermitian

inner product on Ex for all x ∈ V (C) varying continuously or smoothly with

x. This reduces to the above definition when E is a line sheaf, so metrics

on L are often called hermitian metrics.

Example 29.3.2

Let PnC = ProjC[z0, · · · , zn], s = a0z0 + · · · + anzn a global section

of O(1) with ai ∈ C. Let P = [p0 : · · · : pn] be a point in PnC. We

can define the Fubini-Study metric on O(1), given by

‖s‖FS(P ) :=
|a0p0 + · · ·+ anpn|√
‖p0‖2 + · · ·+ ‖pn‖2

another metric on O(1) is given by

‖s‖max(P ) :
|a0p0 + · · ·+ anpn|
max ‖p0‖, · · · , ‖pn‖

The former is smooth and continuous, the latter only continuous

(and not smooth).
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I don’t see how X(C) is going to be
a complex manifold without passing to

the analytification or something like
that. Does he mean “possesses a com-
plex structure”?
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Proposition 30.1.1

Let V be a variety over C, L a line sheaf on V . Then there exists a

smooth metric on L.

We won’t give a full proof here, but the idea is to embed V into a complete

variety to which L extends, and use a smooth partition of unity.

For the rest of the course, we will be using the following convention which is

dominant in Arakelov theory: if k is a number field, then M∞k = Hom(k,C)

and Mk = M∞k
∐
M0
k , and for any ν ∈ M∞k corresponding to σ : k ↪→ C,

‖x‖ν = |σ(x)| for all x ∈ k. We still have a product formula in this case,

as each complex place (in the previous sense) is now two complex places

(conjugate pairs).

Definition 30.1.2: Arithmetic Varieties

An arithmetic variety is an integral scheme X, flat and projective

over SpecZ. In this situation, flatness is equivalent to the unique

generic point of X mapping to the generic point of SpecZ. X is

generically smooth if its generic fiber XQ is smooth (equivalently,

its generic fiber is a regular scheme since we are working in charac-

teristic 0). An arithmetic variety X is generically smooth iff X(C)

is a complex manifold (not necessarily connected).

For the rest of today, X is an arithmetic variety.

Definition 30.1.3: Metrized Line Sheaves

A continuously (resp. smoothly) metrized line sheaf on X is a pair

L = (Lfin, ‖ · ‖L) where Lfin is a line sheaf on X (without metric)

and ‖·‖L is a continuous (resp. smooth) hermitian metric on (Lfin)C

(which is the pullback of Lfin to XC = X ×k C).

A more common notation in the literature of Arakelov theory is L = (L, ‖ ·
‖L) or L = (L, h).
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Let k be a number field, V a projective variety over k, X a model for V over

Y = SpecOk. Then X is an arithmetic variety via X → Y → SpecZ and

is generically smooth iff V is nonsingular. Thus we can see that our notion

of arithmetic variety extends in a natural way to number fields other than

Q. Since k ∼= Ok ⊗Z Q as a Q-algebra, by transitivity of base extension

(Hartshorne p.89),

XQ = X ×Z Q ∼= X ×Ok (Ok ×Z Q) ∼= X ×Ok k = Xk

so X(C) = XQ(C) since there exists a unique map SpecC→ SpecQ.

Consider the following diagram:

SpecC XQ ∼= Xk

Spec k

SpecQ

σ∈M∞k

∃!

Hom(SpecC,Spec k) ∼= Hom(k,C) = M∞k , so we can partition X(C) into

a disjoint union based on the corresponding map SpecC → Spec k, e.g,

X(C) =
∐
σ:k↪→CXσ(C) where Xσ = X×kC, regarding SpecC as a scheme

over Spec k via σ. Then assuming that Xk is geometrically integral over

k), each Xσ(C) is a connected complex space (or, a connected complex

manifold if X is generically smooth).

In the above notation, Xσ = X ×k C, and if L is a line sheaf on X, then

Lσ is the restriction of LC to Xσ, or, equivalently, the pullback of L to

Xσ. Likewise, if L is a metrized line sheaf on X, then Lσ is the pullback

of Lfin to Xσ with the accompanied pullback metric. Therefore, giving a

continuous (resp. smooth) hermitian metric on L is equivalent to giving

continuous (resp. smooth) hermitian metrics on Lσ for all σ.

Proposition 30.1.4

Let L be a continuously metrized line sheaf on a complex variety

V , let s be a nonzero rational section of L, D = divL(s), λD :

(V \ SuppD)(C) → R the function P 7→ − log ‖s(P )‖. Then λ is a

Weil function for D.

Proof: D is represented by (Ui, fi); fix some such i. Then div(s)|Ui =

(fi)|Ui so divL(s/fi) = 0, e.g, s/fi extends to a generator of L|Ui . Then

for all P ∈ Ui \ SuppD,

λ(P ) = − log ‖s(P )‖ = − log |fi(P )| − log ‖(s/fi)(P )‖

and αi := − log ‖s/fi‖ extends to a continuous function Ui(C) → R. It is

also (automatically) locally M -bounded. �
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The proof is left as an exercise.

Somewhere in the definition of P̂ic,

we use the fact that X(C) =∐
σ∈M∞

k
Xσ(C).

Note that if L is smoothly metrized, then αi is smooth on Ui(C).

Definition 30.1.5

A Weil function λ is smooth if for all i (as above), the αi in the

definition of λ are smooth. Similarly, if λ is a Weil function on a

variety over a number field, then it would be smooth if this condition

holds at all archimedean places of the number field.

Note that this imposes a condition at all points of Ui(C), so it is strictly

stronger than saying λ|(V \SuppD)(Cν) is smooth for all ν ∈M∞k .

Proposition 30.1.6

Let D be a Cartier divisor on a complex variety V . Then, giving a

continuous metric onO(D) is equivalent to giving a Weil function for

D. Moreover, the metric is smooth iff the Weil function is smooth.

Let k be a number field, Y = SpecOk, V a projective variety over k, and let

π : X → Y be a projective model for V (and therefore X is an arithmetic

variety when regarded as a scheme over SpecZ). The preceding proposition

carries over to give the following:

Proposition 30.1.7

If D is a Cartier divisor on X, then giving a (continuous) metric

on O(D)∞ (resp O(D)σ for any σ ∈ M∞k ) is equivalent to giving

a partial Weil function for D (i.e for Dk := D|Xk) over M∞k (resp

over {σ}). Again, this metric is smooth iff the partial Weil function

is smooth.

This leads us to defining arithmetic Cartier divisors:

Definition 30.1.8: Arithmetic Cartier Divisors

An arithmetic Cartier divisor onX is an ordered pairD = (Dfin, gD)

where Dfin is a Cartier divisor on X and 1
2gD is a smooth partial

Weil function for DQ on XQ = X ×Z Q over M∞Q (or, equivalently,

a smooth partial Weil function for Dk = (Dfin)k on Xk
∼= V over

M∞k ). Often we will omit the name “Cartier.”

The factor of 1
2 is added above for compatibility with Arakelov theory.

Definition-Proposition 30.1.9: Arithmetic Pic

P̂ic(X) is the group of smoothly metrized line sheaves on X, with

group operation

(Lfin, ‖ · ‖L) · (Mfin, ‖ · ‖M) = (Lfin ⊗Mfin, ‖ · ‖L · ‖ · ‖M)

and inverses given by duals in the obvious way.



math 254: algebraic number theory 165

Here and below we are just stating lots
of facts without any proof.

Definition-Proposition 30.1.10

ˆCDiv(X) is the group of arithmetic Cartier divisors on X, with

componentwise addition (extending the gD part as appropriate). A

divisor D ∈ ˆCDiv(X) gives rise to a metrized line sheaf O(D) ∈
ˆCDiv(X) in an obvious way, giving a group homomorphism ˆCDiv(X)→

P̂ic(X) which is surjective.

Definition-Proposition 30.1.11

A pair (L, s) where L ∈ P̂ic(X) and s is a nonzero rational section

of Lfin gives rise to an arithmetic divisor divL(s) on X. Again,

the set of such pairs form an abelian group in the obvious manner

(tensoring sections together), and (L, s) 7→ div(s) is a surjective

group homomorphism. As a special case of this, when L = OX , we

get principal Cartier divisors (f) = divOX (f) for all f ∈ K(X)×;

K(X)× → ˆCDiv(X) is a group homomorphism (not surjective),

so we have a concept of linear equivalence on ˆCDiv(X). For all

D ∈ ˆCDiv(X), O(D) has a nonzero rational section 1D (equal to

1Dfin
, a nonzero rational section of O(D)fin = O(Dfin) ∈ Pic(X));

and divO(D)(1D) = D as arithmetic divisors.

For all (L, s) as above, there exists a canonical isomorphism O(divL(s))
∼−→

L taking 1divL(s) to s. If f : X1 → X2 is a morphism of arithmetic varieties,

then we have pullback homomorphisms f∗ : P̂ic(X2)→ P̂ic(X1) and

f∗ : {D ∈ ˆCDiv(X2) : f∗Dfin is defined} → ˆCDiv(X1)

compatible with the maps ˆCDiv(Xi)→ P̂ic(Xi) and

{(Li, si) : Li ∈ P̂ic(Xi) and si is a nonzero rational section of Li} → ˆCDiv(Xi)

Since X is integral, the sequence

1→ OX(X)× → K(X)× → ˆCDiv(X)→ P̂ic(X)→ 1

is exact, and compatible with the same sequence without hats. All of the

above can be done when you relax the smoothness conditions to continuity

(throughout). Moreover, all of the above can also be done in the case of

varieties over C.

Briefly, let k, Y, V , and π : X → Y be as in the function field case. Then a

Cartier divisor D on X gave a Weil function λD for Dk“ =′′ D|V on V , and

hλD (P ) = deg σ∗D for all P ∈ V (k) with corresponding section σ : Y → X,

under the assumption that P 6∈ SuppD. Also hλD (P ) = deg σ∗O(D) with

P, σ as before, but now allowing P ∈ SuppD. It is this latter behavior that

we want to extend to the number field case.
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Definition 30.1.12

Let D be an arithmetic divisor on an arithmetic variety X. Then

we defined a partial Weil function λ0
D for Dk = (Dfin)k over M0

k .

We also have a partial Weil function 1
2gD for Dk over M∞k ; we may

glue these to obtain a full Weil function λD for Dk.

Let P ∈ (V \SuppDk)(k) and let σ : Y → X be the corresponding section.

We want to look at the values of λD,ν(P ) for all ν ∈Mk. Over M0
k , σ∗Dfin

on Y is defined, and we can write it as a Weil divisor (i.e a sum over closed

points) σ∗Dfin =
∑
y∈Y ny · y. Let ν ∈M0

k , y ∈ Y the corresponding closed

point, p ⊂ Ok the corresponding prime ideal, nν = ny, p the rational prime

below ν ((p) = p∩Z), fν = fν/Q, so that the residue field κ(y) = Ok/p has

pfν elements. Let Dfin be represented by (Ui, fi) and choose i such that

σ(y) ∈ Ui. Then λ0
D,ν(P ) = − log ‖fi(P )‖ν = nν log([Ok : pν ]).

Over M∞k , we have that ν ∈ M∞k corresponds to τ : k ↪→ C. Then

λD,ν(P ) = 1
2gD(Pτ ), where Pτ ∈ V (Cν) = X(Cν) = Xτ (C) is the map

SpecCν = SpecC τ−→ Spec k
P−→ X over Y . So, what is hλ(P ) =

∑
ν∈Mk

λD,ν(P )?

Over function fields, it was equal to deg σ∗D; we want to find a similar for-

mula for our number field case.

Now Y is an arithmetic variety (an integral scheme, flat, projective over

SpecZ (this is an easy exercise)), and a model over SpecZ for the Q-

variety Spec k, so σ : Y → X is a morphism (over SpecZ) of arithmetic

varieties, so we have an arithmetic divisor σ∗D on Y (since P ∈ SuppDk).

This arithmetic divisor is equal to (σ∗Dfin, gσ∗D) where gσ∗D is a function

Y (C) \ Supp(σ∗Dfin)Q → R defined by gD ◦ σ (where Y (C) = M∞k , and

Supp(σ∗Dfin)Q = ∅ since Suppσ∗Dfin does not contain the generic point of

Y ). We make the following definition, after which we will try to make sense

of it:

Definition 30.1.13: Degree

The degree of an arithmetic divisor E = (Efin, gE) is the (real)

number

degE =
1

2

∑
ν∈M∞k

gE(ν) +
∑
ν∈M0

k

nν log([Ok : pν ])

where nν and pν are as above. This is often denoted ˆdegE.

Proposition 30.1.14

For all α ∈ k×, the degree of the principal arithmetic divisor (α) on

Y is ∑
ν∈M∞k

(− log |τ(α)|) +
∑
ν∈M0

k

(− log ‖α‖ν) = 0
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The appropriate punishment for

Arakelov theory is the death penalty.

where log |τ(α)| = log ‖α‖ν , τ : k ↪→ C corresponds to ν.

How did we get 1
2g(α)(ν) = − log |τ(α)|? We defined the principal arith-

metic divisor (f) on X for all f ∈ K(X)× as a special case L = OX of

divL(s) for metrized line sheaves L on X and their nonzero rational sec-

tions s. In particular, divL(s) = (divLfin
(s), g) where 1

2g is some partial

Weil function for divLfin
(s) over M∞k .

Above, we stated that giving a smooth metric on O(D)∞ (the pullback of

O(D) to X(C)) is equivalent to giving a smooth partial Weil function for

D over M∞k . Here D was a non-arithmetic Cartier divisor on X, so in our

case, D is an arithmetic divisor on X. So the metric on L ∼= O(divL(s))

gives a smooth partial Weil function for divLfin
(s) over M∞k , and that is

out function 1
2g. The partial Weil function is − log ‖s(·)‖.

So, the function g for a principal arithmetic divisor (f) on X (with f ∈
K(X)×) is − log |f(·)|. Further specializing to X = Y , and f = α ∈
K(X)× = K(Y )× = k×, g(ν) = − log ‖α‖ν = − log |τ(α)|.

Note that if D,E ∈ ˆCDiv(Y ), then deg(D+E) = deg(D) + deg(E) (trivial

to verify).

Corollary 30.1.15

For all D ∈ ˆCDiv(Y ), degD depends only on its linear equivalence

class.

Then, we have:

Definition 30.1.16

Let L be a metrized line sheaf on Y . Then degL = deg(divL(s)) for

any nonzero rational section s of L.

This is well-defined because for any s, s′ as above, their divisors differ by

a principal divisor (s/s′), and nonzero rational sections exist. Again, deg :

P̂ic(Y )→ R is a surjective group homomorphism.
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Wrapping up Heights

As above, k is a number field, Y = SpecOk, V is a projective variety over

k, π : X → Y is a projective model for V (and also an arithmetic variety).

Definition 31.1.1

Let P ∈ V (k), σ : Y → X the corresponding section of π. Let D be

an arithmetic divisor on X, λD its associated Weil function. Then

hD(P ) = hλD (P ) which is equal to deg σ∗D if P 6∈ SuppD, and is

equal to deg σ∗O(D) unconditionally.

Let L be a metrized line sheaf on X. Then hL(P ) = deg σ∗L so that

hL(P ) = hD(P ) if L ∼= O(D).

The usual height machine equivalences apply: for L,M∈ P̂ic(X), hL⊗M(P ) =

hL(P ) + hM(P ) for all P ∈ V (k) (additivity). This follows essentially by

linearity of degree:

hL⊗M(P ) = deg σ∗(L ⊗M) = deg σ∗L+ deg σ∗M = hL(P ) + hM(P )

For f : V1 → V2, a morphism of projective k-varieties, X1 and X2 projective

models for V1 and V2 respectively, and assume that f extends to a morphism

f : X1 → X2 over Y . Let L be a metrized line sheaf on X2, then hf∗L(P ) =

hL(f(P )) for all P ∈ V1(k) (functoriality). To see this, let σ1 : Y → X1

correspond to P ∈ V1(k), then σ1 = f ◦ σ1 : Y → X2 corresponds to

f(P ) ∈ X2(k), and hf∗L = deg σ∗f∗L = deg σ∗2L = hL(f(P )).

For n ∈ N, X = PnY , L = O(1), with ‖s(P )‖σ = |a0p0+···+anpn|
max(|p0|,··· ,|pn|) for all

σ : k ↪→ C inM∞k , where P = [p0 : · · · : pn] ∈ PnC and s = a0x0+· · ·+anxn ∈
H0(PnC,O(1)). Then hL(P ) = hk(P ) for all P ∈ V (k) (where V = Pnk ). The

proof of this is left as an exercise.

We return to heights of algebraic points. Let L/k be a finite extension,

YL = SpecOL. Then there is a canonical bijection X(YL) → X(L) over

Y , given by restricting to the generic point of YL. So, for all P ∈ V (L)

we have (canonically) a map σ : YL → X over Y , and we’d like to define

hL(P ) = deg σ∗L
[L:k] . This is because we can let XL = X ×Y YL; then the
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generic fiber of πL : X×Y YL → YL is isomorphic (over L) to VL := V ×kL,

and πL : XL → YL is a model for VL. Note that VL need not be a variety

over L since V need not be geometrically integral, so this would require a

more general definition of model. Then P ∈ VL(L) corresponds to a section

σL : YL → XL of πL and q ◦ σL = σ. Then σ∗L = σ∗L(q∗L), so

deg σ∗L
[L : k]

=
deg σ∗Lq

∗L
[L : k]

=
hq∗L(P )

[L : k]

In order to do this, we need to check the following:

Proposition 31.1.2

Let k, Y, L, YL, and ρ : YL → Y be as above. Then deg ρ∗D = [L :

k] degD for all D ∈ ˆCDiv(Y ).

Proof: For all ν ∈ Mk, let degν D denote the contribution to degD at ν.

For ν ∈ M0
k , degν D = − log ‖f‖ν where (f) = D in some open neighbor-

hood of the point y ∈ Y corresponding to ν. Note that f ∈ k×. Then

∑
ω∈ML,ω|ν

degω ρ
∗D =

∑
ω|ν

− log ‖f‖ω =
∑
ω|ν

− log ‖f‖eωfων =

∑
ω|ν

eωfω

 (− log ‖f‖ν) = [L : k] degν D

For ν ∈ M∞k , this equals 1
2gD(ν), since for all σ : k ↪→ C, Yσ(C) is exactly

one point, and∑
ω|ν

degω ρ
∗D =

∑
ω|ν

1

2
gρ∗D(ω) =

∑
ω|ν

1

2
gD(ν) = [L : k] degν D

since the number of ω|ν is [L : k] for any ν.

Putting these cases together,

deg ρ∗D =
∑
ν∈Mk

∑
ω|ν

degω ρ
∗D = [L : k]

∑
ν∈Mk

degν D = [L : k] degD

�

Definition 31.1.3

Let P ∈ V (k), L a finite extension of k such that P ∈ V (L). Let

YL = SpecOL as always, and let σL : YL → X correspond to the

point P : SpecL → X. Let D be an arithmetic divisor on X and

assume that P 6∈ SuppD, then hD(P ) = 1
[L:k] deg σ∗LD. Note that if

λD is the Weil function on V associated toD, then hD(P ) = hλD (P ).

We may remove the assumption that P 6∈ SuppD by replacing D

with D′ which is linearly equivalent to D.

Let L be a metrized line sheaf on X. Then hL(P ) = deg σ∗L
[L:k] . Both

of these definitions are independent of the choice of L. For a, this
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follows by the above proposition, for bm this follows from the similar

fact that deg p∗L = [L : k] degL for all L ∈ P̂ic(Y ) which is proved

by finding D such that L = O(D).

The height machine holds for algebraic points as well. Also, hL(P ) =

hLk,k(P ) + O(1) for all L ∈ P̂ic(X), all P ∈ V (k) by comparing the two

height machines.

Intersection Theory

We follow Hartshorne’s Appendix A in our discussion here. Let k be an

algebraically closed field.

Definition 31.2.1

Let X be a quasi-projective variety over k. A cycle of codimension

p on X is an element of the free abelian group Zp(X) on the set of

(integral) closed codimension p subvarieties of X.

Let f : X → X ′ be a morphism of quasi-projective varieties over

k, Y ⊆ X a closed subvariety. Then we let f∗(Y ) = [K(Y ) :

K(f(Y ))]f(Y ) if dim f(Y ) = dimY , and 0 otherwise. This is an

element of ZdimX′−dimY (X ′). This extends by linearity to a well-

defined group homomorphism f∗ : Zp(X)→ Zp+dimX′−dimX(X ′).

If X is a nonsingular variety, p ∈ Z>0, i : V ↪→ X a closed sub-

variety of codimension p − 1, f : Ṽ → V the normalization of

V , g ∈ K(V )× = K(Ṽ )×. Then (g) is a Weil divisor on Ṽ , so

(g) ∈ Z1(Ṽ ), so (i◦f)∗((g)) ∈ Zp(x). Let Ratp(X) be the subgroup

of Zp(X) generated by (i ◦ f)∗((g)) for all such V, i, f, g as above,

Rat0(X) = (0). For all p ∈ N, we say that two cycles in Zp(X) are

rationally equivalent if they differ by an element of Ratp(X). Set

CHp(X) = Zp(X)/Ratp(X), the Chow Group in codimension p of

X, and CH(X) :=
⊕

p CHp(X).

For p ∈ N, d = dimX − p. Then Zd(X) = Zp(X), Ratd(X) =

Ratp(X), CHd(X) = CHp(X). f∗ maps Zd(X) to Zd(X
′).

Example 31.2.2

CH0(X) = Z, generated by [X] (the fundamental class), since X is

the only closed subvariety of codimension 0. CH1(X) = Cl(X) (the

class group of X).
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Example 31.2.3

CHd(Pn) ∼= Z for all 0 ≤ d ≤ n, all n. This isomorphism is given by

taking the degree (in terms of hyperplane intersections).

Let X be a nonsingular variety over k, Y,Z closed subvarieties of X. Then

all irreducible components W of Y ∩Z have codimW ≤ codimY +codimZ.

This follows from the general Hauptidealsatz.

Definition 31.2.4

Closed subvarieties Y and Z of X meet properly if all irreducible

components W of Y ∩ Z satisfy codimW = codimY + codimZ. If

Y and Z meet properly, then their intersection cycle Y.Z is the cycle∑
W i(Y,Z;W ) ·W where

i(Y, Z;W ) =

∞∑
i=0

(−1)i length TorAi (A/a,A/b)

where A = Oa,W , and a, b are the ideals in A of Y and Z respectively.

Y.Z ∈ Zp+q(X) where p = codimY , q = codimZ. Cycles Y ∈
Zp(X) and Z ∈ Zq(X) meet properly if Y =

∑
niYi, Z =

∑
mjZj ,

where Yi and Zj meet properly for all i, j. If so, then Y.Z is defined

by bilinearity.

Theorem 31.2.5: Chow’s Moving Lemma

Let X be a nonsingular quasi-projective variety over k. Then every

rational equivalence class in X is big enough to contain a cycle that

meets any other cycle properly. Therefore, an intersection product

on CH(X) is well-defined.

Theorem 31.2.6: The BIG Theorem

Let C be the category of nonsingular quasi-projective varieties over

k. Then, with the above definitions, for all X ∈ C, the intersection

pairing on X is well-defined (as a bilinear map CHp(X)×CHp(X)→
CHp(X)), commutative, associative, and makes CH(X) a graded

ring with unit [X].

Let f : X → X ′ be a morphism in C, Γf the graph of f , ϕ : X×X ′ →
X, ψ : X × X ′ → X ′ the projections. For prime cycles Y ′ In X ′,

let f∗(Y ′) = ϕ∗(Γf .ψ
−1(Y ′)) = ϕ∗(Γf .(X × Y ′)). Then f∗ givves a

well-defined functorial graded homomorphism CH(X ′)→ CH(X).

Let f : X → X ′ be a morphism in C. Then f∗ is a well-defined ho-

momorphism of graded groups, shifting degrees by dimX ′− dimX.
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The connection to K-theory might

be Bloch’s formula. Tensoring by
Q seems related to Grothendieck-

Riemann-Roch.

If f : X → X ′ is a proper morphism in C, then f∗(Y.f
∗Z) = f∗(Y ).Z

for all Y ∈ CH(X), Z ∈ CH(X ′).

Reduction to the diagonal: Y.Z = ∆∗(Y ×Z) where ∆ : X → X×X
is the diagonal, for all prime cycles Y, Z ∈ CH(X).

Let Y ⊆ X be a closed subvariety of X, Z an effective Cartier divisor

on X. If Y and Z meet properly, then Y.Z is i∗ of i∗Z on Y , where

i : Y ↪→ X is the inclusion map.

Note that, in the above, we allowed X to be quasi-projective, but usually,

X should be projective. CHp(An) = 0 for all p, n since rational equivalence

allows us to move all subvarieties to infinity (which therefore vanish).

Let d = dimX, then CHd(X) is the free group on the set of closed points

of X up to equivalence, and we have a linear map deg : CHd(X) → Z
given by P 7→ 1 for all P ∈ X(k), or more generally, P 7→ [κ(P ) : k] if

k is not algebraically closed. This is the same as the map CHd(X)
π∗−→

CH0(Spec k) ∼= Z where π : X → Spec k is the structural map. For the

degree to be well-defined, X must be projective.

We want to extend intersection theory to arithmetic varieties. Some diffi-

culties arise: namely, that Chow’s lemma doesn’t extend since many residue

fields are finite. Moreover, we need to accommodate archimedean places in

order for deg to be well-defined. We will have ĈH
d
(X)

π∗−→ ĈH
1
(SpecZ) =

ˆCDiv(SpecZ)
deg−−→ R. Another issue is that we don’t have resolution of

singularities in characteristic p or for arithmetic varieties (mixed charac-

teristic) when dim ≤ 3. This version of intersection theory is useful in the

function field case, provided we address the resolution of singularities in

char p, dim > 3.

Arakelov intersection theory avoids these difficulties. The lack of a mov-

ing lemma is resolved by using some clever extensions of intersection the-

ory using K-theory. The issue of singularities is resolved by working in

CH(X) ⊗Z Q which can handle singular varieties. The issue of infinite

places is resolved by using complex differential geometry on Xσ(C) for all

σ ∈M∞k (or, equivalently, on X(C) =
∐
σXσ(C)).

Complex Differential Forms

Elements of ĈH
p
(X) will have archimedean components constructed using

complex differential forms on Xσ(C) for all σ.

Recall that z = x + iy, z = x − iy, dz = dx + idy, dz = dx − idy. We
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I think we’re trying to get to Dolbeault

cohomology or Hodge theory or some-
thing.

This smells like “f holomorphic =⇒
log |f | harmonic” or something like

that.

have that x = z+z
2 and y = z−z

2i , dx = dz+dz
2 , dy = dz−dz

2i . Moreover, we

have that ∂
∂z = 1

2

(
∂
∂x − i

∂
∂y

)
and ∂

∂z = 1
2

(
∂
∂x + i ∂∂y

)
. If Ω ⊆ C is open,

f : Ω→ C is a function, f is holomorphic iff f is differentiable and ∂f
∂z = 0

(this is just the Cauchy-Riemann criterion).

For differentiable f : Ω→ C, define ∂f = ∂f
∂z dz and ∂f = ∂f

∂z dz. These are

one forms on Ω. Note that

df =
∂f

∂x
dx+

∂f

∂y
dy = (∂ + ∂)f

by routine manipulations, so d = (∂ + ∂).

This discussion was for one complex variable; for Ω ⊆ Cn, fix coordinate

functions z1, · · · , zn, write zk = xk+iyk, zk = xk−iyk, ∂f =
∑
i
∂f
∂zi
dzi, and

∂f =
∑
i
∂f
∂zi

dzi. For I = (i1, · · · , ip) a p-tuple of indices with i1 < · · · < ip,

then dzI = dzi1∧· · ·∧dzip and dzI = dzi1∧· · ·∧dzip . ∧ is anticommutative

in degree 1, so dzi∧dzj = −dzj∧dzi, dzi∧dzj = −dzj∧dzi, etc. Therefore,

dzI ∧ dzJ = (−1)pqdzJ ∧ dzI where J = (j1, · · · , jq), I as above.

Definition 31.3.1

A complex (p, q)-form on Ω ⊆ Cn is a sum
∑
I,J ΨIJdzI ∧dzJ where

the sum is over all p-tuples I, q-tuples J as above, and ΨIJ : Ω→ C
is a function for all I, J . The form is continuous, smooth, C1, C2,

etc. if all of the ΨIJ have the same property respectively.

∂f as above is (1, 0)-form, ∂f is a (0, 1)-form. f itself is (0, 0)-form. Note

that ∂ of a (p, q)-form is naturally a (p+ 1, q)-form, and ∂ of a (p, q)-form

is a (p, q + 1)-form, e.g

∂

∑
I,J

ΨIJdzI ∧ dzj

 =
∑
I,J

(∂ΨIJ) ∧ dzI ∧ dzJ

Again, d = ∂ + ∂ is the usual d from real analysis, and a real operator.

Also, define dc = i
4π (∂ − ∂) which is also a real operator. Then

ddc =
i

4π
(∂ + ∂)(∂ − ∂) =

i

2π
∂∂

where we distribute the product and use the fact that ∂2 = ∂
2

= 0 by

anticommutativity of ∧ (and anticommutativity of ∂ with ∂).

Proposition 31.3.2

If f : Ω→ C is holomorphic, then −ddc log |f |2 = 0.

Proof:

−ddc log |f |2 = − i

2π
∂∂ log |f |2 = − i

2π
(∂(∂ log f)− ∂(∂ log f)) = 0



174 abhishek shivkumar

gi is the ith coordinate of g.

Recall that a complex manifold is de-
fined similarly to a real manifold, but

with open subsets homeomorphic to
open subsets of Cn and with holomor-

phic (rather than simply analytic or dif-

ferentiable) transition maps.

where both terms on the right hand side vanish since they are ∂ or ∂ of an

antiholomorphic or holomorphic function respectively. �

Proposition 31.3.3: Chain Rule

Let Ω,Ω′ ⊆ Cn be open sets, with complex coordinates z1, · · · , zn
and w1, · · · , wn respectively. Let g : Ω′ → Ω, f : Ω → C be differ-

entiable functions. Then

∂

∂wj
(f ◦ g)(P ) =

n∑
i=1

∂f

∂zi
g(P )

∂gi
∂wj

(P ) +

n∑
i=1

∂f

∂zi
g(P )

∂gi
∂wj

(P )

for all j, all P ∈ Ω′, and similarly with wj replaced by wj through-

out. If g is holomorphic, then one of the sums vanishes (since the

partials with respect to zi vanish.)

Definition 31.3.4: Pullbacks

With notation as above,

g∗(df) = d(f ◦ g) =

n∑
j=1

n∑
i=1

∂f

∂zi

∂gi
∂wj

+
∂f

∂zi

∂gi
∂wj

dwj +

n∑
j=1

(· · · )dwj

so g∗(dzi) = dgi and g∗(dzi) = dgi. If g is holomorphic, then

g∗(dzi) = ∂gi and g∗(dzi) = ∂gi.

Note that pullbacks are functorial, e.g, (g ◦ f)∗ = h∗g∗.

Lemma 31.3.5

g∗d = dg∗, e.g, g∗ and d commute as operators. Equivalently,

g∗dψ = dg∗ψ for all (p, q)-forms or n-forms ψ. Also, if g is holomor-

phic, then g∗∂ = ∂g∗, g∗∂ = ∂g∗.

Proof: The first equality follows from differential geometry, the second

and third follow from splitting the first equality into components of degrees

(1, 0) and (0, 1). �

Corollary 31.3.6

d, ∂, and ∂ are well-defined operators on forms on a complex man-

ifold, and the concept of a (p, q)-form is well-defined on a complex

manifold.

In polar coordinates z = reiθ (in one complex variable), dc = r
4π

∂
∂r ⊗ dθ −

1
4πr

∂
∂θ ⊗ dr.
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Example 31.3.7

ddc|z|2 = ddcr2 = d
( r

4π
2rdθ

)
=

1

2π
d(r2dθ) =

r

π
dr ∧ dθ

Then we can integrate:∫
α(z)ddc|z|2 =

∫
θ

∫
r

α(z)
r

π
drdθ

This involved choosing an orientation dr ∧ dθ to drdθ; the former

anticommutes and the latter commutes.

In rectangular coordinates,

ddc|z|2 =
i

2π
∂∂(zz) =

i

2π
∂(zdz) =

i

2π
dz ∧ dz

Writing dz = dx+ idy, we have that

ddc|z|2 =
i

2π
(dx+ idy) ∧ (dx− idy) =

1

π
dx ∧ dy

Lemma 31.3.8: Integral Table

Let Ω be an open neighborhood of 0 in C, and let α, β : Ω\{0} → C
be smooth functions. If α = −c log |z|2 + α̃ where c is a constant

and limz→0 α̃(z) converges, and β extends to a smooth function on

Ω, then αddcβ is absolutely integrable in a neighborhood of 0, and

limε→0+

∫
|z|=ε αd

cβ = 0.

If limz→0 α(|z|) converges, β = − log |z|2 + β̃ where β̃ extends to

a smooth function on Ω, then αddcβ is absolutely integrable in a

neighborhood of 0, and limε→0+

∫
|z|=ε αd

cβ = −α(0).

Proof: Absolute integrability of αddcβ boils down to absolute integrability

of− log |z|2, which is equivalent to (in polar coordinates)
∫ 2π

0

∫ ρ
0

(− log r2)rdrdθ <

∞ for some small ρ ≤ 1, and this is true because (− log r2)r → 0 as r → 0+.

For the second assertion,

lim
ε→0+

∫
|z|=ε

αddcβ = lim
ε→0+

∫
|z|=ε

α

(
r

4π

∂β

∂r

)
dθ = 0

where the final equality is due to the fact that dr||z|=ε = 0 and αr
4π → 0,

while ∂β
∂r is bounded.

For the second part, by the above, we may assume that β̃ = 0, so β =

− log |z|2. Then ddcβ = 0, so we get absolute integrability of αddcβ. Since

β = − log r2, dcβ = − dθ
2π , and therefore

lim
ε→0+

∫
|z|=ε

αdcβ = − lim
ε→0+

∫
|z|=ε

α
dθ

2π
= −α(0)

where the second equality is by the fact that the second integral is essentially
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the average of α on the circle |z| = ε, which converges to α(0) as ε→ 0 (up

to sign). �

Definition 31.3.9

Let X be a smooth complex projective curve, D =
∑
P nPP a di-

visor on X, and let Σ be a subset of X(C) containing SuppD. Let

g : Σ → C be a function, then g(D) =
∑
P nP g(P ). A metrized

divisor on X is a pair D = (Dfin, gD) where Dfin is a divisor on

X and 1
2gD is a smooth Weil function for D on X. For metrized

divisors D,E on X, we say that D and E intersect properly if

SuppDfin ∩ SuppEfin = ∅. If D and E intersect properly, then

their local intersection pairing is

〈D.E〉 = gD(E) +

∫
X(C)\(SuppDfin∩Efin)

gEdd
′gD

By the above lemma, the integral in this expression converges abso-

lutely.

Proposition 31.3.10

Let D and E be metrized divisors on X, and assume that they meet

properly. Then 〈D.E〉 = 〈E.D〉.

Proof: By linearity, we may assume that D and E are distinct prime

divisors P and Q respectively.. What if Dfin = 0 and gD 6= 0? Then gD is

a smooth function on all of X(C), and we may write D = D1 −D2 where

D1,fin = D2,fin = P for some P 6∈ SuppEfin, and gD1 − gD2 = gD. We need

to show that

gP (Q)− gQ(P ) =

∫
X(C)\(P∪Q)

gP dd
cgQ − gQddcgP

We will do this by evaluating∫
X(C)\(P∪Q)

d(gP d
cgQ − gQdcgP )

in two different ways. First, we may evaluate this expression directly using

dgP ∧ dcgQ = dgQ ∧ dcgP ; to see that this holds, write

dgP ∧ dcgQ = (∂gP + ∂gP ) ∧ i

4π
(∂gQ − ∂gQ) =

i

4π
(∂gP ∧ ∂gQ − ∂gP ∧ ∂gQ + ∂gP ∧ ∂gQ − ∂gP ∧ ∂gQ)

The middle two terms in the above expansion vanish for degree reasons, so

the resulting expression is symmetric in P and Q, so∫
X(C)\(P∪Q)

d(gP d
cgQ − gQdcgP )
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Expanding
∫
X(C)\(P∪Q)

d(gP d
cgQ − gQd

cgP ) using this identity produces

the right hand side of the claim.

Let ϕ : U → C and ψ : V → C be holomorphic local coordinate maps, where

U and V are neighborhoods of P andQ respectively, with ϕ(P ) = ψ(Q) = 0.

Let Xε := X(C) \ (ϕ−1(Dε)∪ψ−1(Dε)) where Dε is the open ball of radius

ε centered at 0. Then∫
X(C)\(P∪Q)

d(gP d
cgQgQd

cgP ) = lim
ε→0+

∫
Xε

d(gP d
cgQgQd

cgP )

By Stokes’ theorem, the latter term is equal to

− lim
ε→0+

(∫
|ϕ|=ε

+

∫
|ψ|=ε

)
(gP d

cgQ − gQdcgP )

where the minus sign comes from orientation. The integral table lemma

tells us that this expression is in turn equal to gP (Q)− gQ(P ), from which

the result follows. �

Definition 31.3.11: Arithmetic Surfaces

An arithmetic surface is an arithmetic variety of dimension 2. It is

generically smooth (resp. regular) if it has that property as an arith-

metic variety (resp. scheme). Note that regular implies generically

smooth.

Definition 31.3.12

Let X be an arithmetic surface. Then XC = X ×Z C. Let D be an

arithmetic divisor on X. Then DC is the metrized divisor (D′C, gD)

where D′C is the restriction of Dfin to XC.

Definition 31.3.13

Let X be a regular arithmetic surface. Note that we have resolution

of singularities in mixed characteristic when dimX ≤ 3 so regularity

is not an essential restriction. Let D and E be arithmetic divisors

on X that intersect properly (so Dfin and Efin intersect properly,

which implies DC and EC intersect properly). Then the intersection

number (D.E) is defined to be

(D.E) = deg(Dfin.Efin) +
1

2
〈DC.EC〉

where 〈DC.EC〉 is summed over the irreducible components of XC,

and Dfin.Efin ∈ Z2(X) is defined to be∑
x∈SuppDfin∩SuppEfin

i(Dfin, Efin;x) · x

where i(Dfin, Efin;x) is defined bilinearly as follows: let D and E be

prime Weil divisors on X, locally defined by f, g ∈ OX,x respectively
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What a beautiful result to end on. Re-
ally made the climb worth the effort.

at x; then i(D,E;x) =
∑

(−1)i TorOi (O/(f),O/(g)) where O =

OX,x. However since O/(f) has a free resolution O → O ·f−→ O →
O/(f) → 0, Tori = 0 for all i > 1 and since f is a nonzerodivisor

in O/(g), Tor1 = 0. So i(D,E;x) = length(O/(f) ⊗O O/(g)) =

length(O/(f, g)). Also deg(
∑
nx · x) =

∑
nx log |κ(x)|.

In order for this to make sense, we need the following:

Proposition 31.3.14

Let D be an arithmetic divisor on X, f ∈ K(X)×. If D and (f)

intersect properly, then (D.(f)) = 0.

Proof: It will suffice to prove this when D = (Z, 0) where Z is an irre-

ducible component of a fiber of X → SpecZ and in the case where Dfin = P

where P ∈ X(Q) and 1
2gD is any smooth Weil function for P . �
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